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Outline
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Recap: Single-Item Allocation

ØA single and indivisible item, 𝑛 buyers 1,⋯ , 𝑛 = [𝑛]

ØBuyer 𝑖 has a (private) value 𝑣! ∈ 𝑉! about the item

ØOutcome: choice of the winner of the item, and payment 𝑝! from 
each buyer 𝑖

ØObjectives: maximize revenue
• Last lecture: VCG auction maximizes welfare (even for multiple items)
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The Mechanism Design Problem

Objective: maximize revenue ∑!∈[$] 𝑝!
ØCannot have any guarantee without additional assumptions 
ØWill assume public prior knowledge on buyer values 𝑣! ’s. 
ØFor today, always assume 𝑣! ∼ 𝑓! independently

Mechanism Design for Single-Item Allocation

Described by ⟨𝑛, 𝑉, 𝑋, 𝑢⟩ where:

Ø 𝑛 = {1,⋯ , 𝑛} is the set of 𝑛 buyers
Ø𝑉 = 𝑉&×⋯× 𝑉$ is the set of all possible value profiles
Ø𝑋 = {𝑥 ∈ 0,1 $: ∑! 𝑥! ≤ 1} = set of all possible allocation rules
Ø𝑢 = (𝑢& , ⋯ , 𝑢$) where 𝑢! = 𝑣!𝑥! − 𝑝! is the utility function of 𝑖

for any outcome 𝑥 ∈ 𝑋 and payment 𝑝! required from 𝑖
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The Mechanism Design Problem

Mechanism Design for Single-Item Allocation

Described by ⟨𝑛, 𝑉, 𝑋, 𝑢⟩ where:

Ø 𝑛 = {1,⋯ , 𝑛} is the set of 𝑛 buyers
Ø𝑉 = 𝑉&×⋯× 𝑉$ is the set of all possible value profiles
Ø𝑋 = {𝑥 ∈ 0,1 $: ∑! 𝑥! ≤ 1} = set of all possible allocation rules
Ø𝑢 = (𝑢& , ⋯ , 𝑢$) where 𝑢! = 𝑣!𝑥! − 𝑝! is the utility function of 𝑖

for any outcome 𝑥 ∈ 𝑋 and payment 𝑝! required from 𝑖

Remarks:

Ø(Naturally) assume all players maximize expected utilities 

ØWill guarantee 𝔼[𝑢!] ≥ 0 (a.k.a., individually rational or IR)
• Otherwise, players would not even bother coming to your auction
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The Design Space (i.e., Possible Mechanisms)

A mechanism (i.e., the game) is specified by ⟨𝐴, 𝑔⟩ where:

ØThat is, we will design a game ⟨𝐴, 𝑔⟩
ØPlayers’ utility function will be fully determined by ⟨𝐴, 𝑔⟩
ØThis is a game with incomplete information – 𝑣! is privately known 

to player 𝑖; all other players only know its prior distribution 

ØA = 𝐴&×⋯× 𝐴$ where 𝐴! is allowable actions for buyer 𝑖
Ø𝑔: 𝐴 → [𝑥, 𝑝] maps any 𝑎 = (𝑎&, ⋯ , 𝑎$) ∈ 𝐴 to 

[an allocation outcome 𝑥(𝑎) &  a vector of payments 𝑝(𝑎)]
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The Design Space (i.e., Possible Mechanisms)

Example 1: first-price auction
Ø 𝐴! = ℝ' for all 𝑖
Ø 𝑔 𝑎 allocates the item to the buyer 𝑖∗ = argmax

!∈[$]
𝑎! and asks 

𝑖∗ to pay 𝑎!∗, and all other buyers pay 0

A mechanism (i.e., the game) is specified by ⟨𝐴, 𝑔⟩ where:
ØA = 𝐴&×⋯× 𝐴$ where 𝐴! is allowable actions for buyer 𝑖
Ø𝑔: 𝐴 → [𝑥, 𝑝] maps any 𝑎 = (𝑎&, ⋯ , 𝑎$) ∈ 𝐴 to 

[an allocation outcome 𝑥(𝑎) &  a vector of payments 𝑝(𝑎)]
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The Design Space (i.e., Possible Mechanisms)

Key Challenge 1
Ø Design space ⟨𝐴, 𝑔⟩ generally can be arbitrary and too large
Ø E.g, the following is a valid – though weird – mechanism

Ø 𝐴! = {𝑗𝑢𝑚𝑝 𝑡𝑤𝑖𝑐𝑒 (𝐽), 𝑘𝑖𝑐𝑘 𝑖𝑛 𝑎 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑏𝑎𝑙𝑙 (𝐿)}
Ø 𝑥(𝑎) gives the item to anyone of 𝐿 uniformly at random
Ø 𝑝(𝑎) asks winner to pay #Jumps

A mechanism (i.e., the game) is specified by ⟨𝐴, 𝑔⟩ where:
ØA = 𝐴&×⋯× 𝐴$ where 𝐴! is allowable actions for buyer 𝑖
Ø𝑔: 𝐴 → [𝑥, 𝑝] maps any 𝑎 = (𝑎&, ⋯ , 𝑎$) ∈ 𝐴 to 

[an allocation outcome 𝑥(𝑎) &  a vector of payments 𝑝(𝑎)]
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That is, an observation stating that focusing on certain natural 
class of mechanisms is without loss of generality 

The Solution: Revelation Principle



10

Direct Revelation Mechanisms

ØThat is, the action for each player is to “report” her value (but they 
don’t have to be honest…yet)

ØExamples: second-price auction, first-price auction

ØNote: this constrains our design space as it limits choice of 𝐴! ’s
• It will not reduce our best achievable revenue, as turned out

Definition. A mechanism ⟨𝐴, 𝑔⟩ is a direct revelation mechanism
if 𝐴! = 𝑉! for all 𝑖. In this case, mechanism is described only by 𝑔.
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Incentive-Compatibility (IC) 

ØA similar but stronger IC requirement

Definition. A direct revelation mechanism 𝑔 is Bayesian
incentive-compatible (a.k.a., truthful or BIC) if truthful bidding
forms a Bayes Nash equilibrium in the resulting game

Definition. A direct revelation mechanism 𝑔 is Dominant-
Strategy incentive-compatible (a.k.a., truthful or DSIC) if truthful
bidding is a dominant-strategy equilibrium in the resulting game

ØA DSIC mechanism is also BIC
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Incentive-Compatibility: Examples 

ØNot a direct revelation mechanism as buyer’s action is only to 
accept or not accept, but not report their value (hence no BIC)

ØBut this can be converted to an equivalent direct BIC mechanism: 
1. Ask each buyer to report their value 𝑣!
2. Designer accepts iff 𝑣! ≥ 𝑝 and charges 𝑝 (essentially, designer 

simulates buyer’s actions in the original mechanism)

Second-price auction is DSIC, and thus also BIC.

First-price auction is not BIC, neither DSIC.  

Example (posted price mechanism). Auctioneer simply posts a
fixed price 𝑝 to players in sequence until one buyer accepts.
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The Revelation Principle

Remarks

ØCan be stated more generally, but this version is sufficient for our 
purpose of optimal auction design
• The same proof idea: simulating buyer’s actions in original mechanism

ØCan thus focus on BIC mechanisms henceforth

Theorem. For any mechanism achieving revenue 𝑅 at a Bayes
Nash equilibrium [resp. dominant-strategy equilibrium], there is a
direct revelation, Bayesian incentive-compatible [resp. DSIC]
mechanism achieving revenue 𝑅.
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The Revelation Principle

This simplifies our mechanism design task

Optimal Mechanism Design for Single-Item Allocation 
Given instance ⟨𝑛, 𝑉, 𝑋, 𝑢⟩, supplemented with prior 𝑓! !∈[$], design 
the allocation function 𝑥: 𝑉 → 𝑋 and payment 𝑝: 𝑉 → ℝ$ such that 
truthful bidding is a BNE in the following Bayesian game:

1. Solicit bid 𝑏& ∈ 𝑉& , ⋯ , 𝑏$ ∈ 𝑉$
2. Select allocation 𝑥 𝑏& , ⋯ , 𝑏$ ∈ 𝑋 and payment 𝑝(𝑏& , ⋯ , 𝑏$)

Design goal: maximize expected revenue

Theorem. For any mechanism achieving revenue 𝑅 at a Bayes
Nash equilibrium [resp. dominant-strategy equilibrium], there is a
direct revelation, Bayesian incentive-compatible [resp. DSIC]
mechanism achieving revenue 𝑅.
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Optimal (Bayesian) Mechanism Design 

ØPrevious formulation and simplification leads to the following 
optimization problem 

max
),+

𝔼,∼. ∑!/&
$ 𝑝!(𝑣& , ⋯ , 𝑣$)

s. t. 𝔼,"#∼."# 𝑣!𝑥! 𝑣! , 𝑣0! − 𝑝! 𝑣! , 𝑣0!
≥ 𝔼,"#∼."# 𝑣!𝑥! 𝑏! , 𝑣0! − 𝑝! 𝑏! , 𝑣0! , ∀𝑖 ∈ 𝑛 , 𝑣! , 𝑏! ∈ 𝑉!

𝑥(𝑣) ∈ 𝑋, ∀𝑣 ∈ 𝑉

𝔼,"#∼."# 𝑣!𝑥! 𝑣! , 𝑣0! − 𝑝! 𝑣! , 𝑣0! ≥ 0, ∀𝑖 ∈ 𝑛 , 𝑣! ∈ 𝑉!

BIC constraints

Individually rational (IR) 
constraints
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Optimal (Bayesian) Mechanism Design 

ØPrevious formulation and simplification leads to the following 
optimization problem 

max
),+

𝔼,∼. ∑!/&
$ 𝑝!(𝑣& , ⋯ , 𝑣$)

s. t. 𝔼,"#∼."# 𝑣!𝑥! 𝑣! , 𝑣0! − 𝑝! 𝑣! , 𝑣0!
≥ 𝔼,"#∼."# 𝑣!𝑥! 𝑏! , 𝑣0! − 𝑝! 𝑏! , 𝑣0! , ∀𝑖 ∈ 𝑛 , 𝑣! , 𝑏! ∈ 𝑉!

𝑥(𝑣) ∈ 𝑋, ∀𝑣 ∈ 𝑉

𝔼,"#∼."# 𝑣!𝑥! 𝑣! , 𝑣0! − 𝑝! 𝑣! , 𝑣0! ≥ 0, ∀𝑖 ∈ 𝑛 , 𝑣! ∈ 𝑉!

ØThis problem is challenging because we are optimizing over 
functions 𝑥: 𝑉 → 𝑋 and 𝑝: 𝑉 → ℝ$
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Optimal DSIC Mechanism Design 

ØDesigning optimal DSIC mechanism is a strictly more constrained 
optimization problem

max
),+

𝔼,∼. ∑!/&
$ 𝑝!(𝑣& , ⋯ , 𝑣$)

s. t. 𝔼,"#∼."# 𝑣!𝑥! 𝑣! , 𝑣0! − 𝑝! 𝑣! , 𝑣0!
≥ 𝔼,"#∼."# 𝑣!𝑥! 𝑏! , 𝑣0! − 𝑝! 𝑏! , 𝑣0! , ∀𝑖 ∈ 𝑛 , 𝑣! , 𝑏! ∈ 𝑉!

𝑥(𝑣) ∈ 𝑋, ∀𝑣 ∈ 𝑉

𝔼,"#∼."# 𝑣!𝑥! 𝑣! , 𝑣0! − 𝑝! 𝑣! , 𝑣0! ≥ 0, ∀𝑖 ∈ 𝑛 , 𝑣! ∈ 𝑉!

∀ 𝑣0!

Corollary. Optimal DSIC mechanism achieves revenue at most that
of optimal BIC mechanism.
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Myerson’s Optimal Auction 

Theorem (informal). For single-item allocation with prior distribution
𝑣! ∼ 𝑓! independently, the following auction is BIC and optimal:
1. Solicit buyer values 𝑣& , ⋯ , 𝑣$

2. Transform 𝑣! to “virtual value” 𝜙!(𝑣!) where 𝜙! 𝑣! = 𝑣! −
&01#(,#)
.#(,#)

3. If 𝜙! 𝑣! < 0 for all 𝑖, keep the item and no payments
4. Otherwise, allocate item to 𝑖∗ = argmax

!∈[$]
𝜙!(𝑣!) and charge him

the minimum bid needed to win, i.e., 𝜙!0& max max
45!∗

𝜙4(𝑣4) , 0 ;

Other bidders pay 0.

It turns out to deeply relate to, though critically differ from, second price auction.
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Remarks

Myerson’s optimal auction is noteworthy for many reasons

ØMatches practical experience: when buyer values are i.i.d, 
optimal auction is a second price auction with reserve 𝜙0&(0).

ØApplies to “single parameter” problems more generally 

ØThe optimal BIC mechanism just so happens to be DSIC and 
deterministic!!
• Not true for multiple items – there exists revenue gap even when 

selling two items to two bidders   
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Key Quantities 

Ø Expected winning probability of buyer 𝑖, as a function of bid 𝑏!
𝑥! 𝑏! = 𝔼"!"∼$!"𝑥! 𝑏! , 𝑣%!

ØSimilarly, expected payment
𝑝! 𝑏! = 𝔼"!"∼$!"𝑝! 𝑏! , 𝑣%!

ØConsequently,
• Expected bidder utility of 𝑏!

𝑣!𝑥! 𝑏! − 𝑝! 𝑏!
• If BIC, expected revenue

*
!&'

(
𝔼""∼$" 𝑝!(𝑣!)
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Step 1: Myerson’s Monotonicity Lemma

Lemma. Consider single-item allocation with prior distribution 𝑣! ∼ 𝑓!
independently. A direct-revelation mechanism with interim allocation
𝑥 and interim payment 𝑝 is BIC if and only if for each buyer 𝑖:
1. 𝑥!(𝑏!) is a monotone non-decreasing function of 𝑏!
2. 𝑝!(𝑏!) is uniquely determined as follows

𝑝! 𝑏! = 𝑏! ⋅ 𝑥! 𝑏! − ∫6/7
6# 𝑥! 𝑏 𝑑𝑏 .
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Step 1: Myerson’s Monotonicity Lemma

Lemma. Consider single-item allocation with prior distribution 𝑣! ∼ 𝑓!
independently. A direct-revelation mechanism with interim allocation
𝑥 and interim payment 𝑝 is BIC if and only if for each buyer 𝑖:
1. 𝑥!(𝑏!) is a monotone non-decreasing function of 𝑏!
2. 𝑝!(𝑏!) is uniquely determined as follows

𝑝! 𝑏! = 𝑏! ⋅ 𝑥! 𝑏! − ∫6/7
6# 𝑥! 𝑏 𝑑𝑏 .
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Interpretation of Myerson’s Lemma

ØThe higher a player bids, the higher the probability of winning

ØFor each additional 𝜖 increase of winning probability, pay 
additionally at a rate equal to the current bid

ØProof omitted here
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Corollaries of Myerson’s Lemma

Corollaries.
1. Interim allocation uniquely determines interim payment 

2. Expected revenue depends only on the allocation rule

3. Any two auctions with the same interim allocation rule at BNE 
have the same expected revenue at the same BNE 
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Step 2: Revenue as Virtual Welfare

ØDefine the virtual value of player 𝑖 as a function of his value 𝑣!:

𝜙! 𝑣! = 𝑣! −
1 − 𝐹!(𝑣!)
𝑓!(𝑣!)

Lemma. Consider any BIC mechanism 𝑀 with interim allocation 𝑥
and interim payment 𝑝 , normalized to 𝑝! 0 = 0 . The expected
revenue of 𝑀 is equal to the expected virtual welfare served

∑!/&
$ 𝔼,#∼.# 𝜙! 𝑣! 𝑥!(𝑣!)

ØThis is the expected virtual value of the winning bidder

ØProof is an application of Myerson’s monotonicity lemma, plus 
algebraic calculations 

ØRecall the expected revenue is ∑!/&$ 𝔼,#∼.# 𝑝!(𝑣!)
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Step 2: Revenue as Virtual Welfare

ØDefine the virtual value of player 𝑖 as a function of his value 𝑣!:

𝜙! 𝑣! = 𝑣! −
1 − 𝐹!(𝑣!)
𝑓!(𝑣!)

Lemma. Consider any BIC mechanism 𝑀 with interim allocation 𝑥
and interim payment 𝑝 , normalized to 𝑝! 0 = 0 . The expected
revenue of 𝑀 is equal to the expected virtual welfare served

∑!/&
$ 𝔼,#∼.# 𝜙! 𝑣! 𝑥!(𝑣!)

ØThis is the expected virtual value of the winning bidder

ØProof is an application of Myerson’s monotonicity lemma, plus 
algebraic calculations 

ØRecall the expected revenue is ∑!/&$ 𝔼,#∼.# 𝑝!(𝑣!)
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Proof
𝔼,#∼.# h𝑝! 𝑣! = i

,#
𝑣! ⋅ 𝑥! 𝑣! − i

6/7

,#
𝑥! 𝑏 𝑑𝑏 𝑓! 𝑣! 𝑑𝑣!

By Myerson’s monotonicity lemma

Assumed bidder 𝑖 bids truthfully
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Proof

= i
,#
𝑣! ⋅ 𝑥! 𝑣! 𝑓! 𝑣! 𝑑𝑣! − i

,#
i
6/7

,#
𝑥! 𝑏 𝑓! 𝑣! 𝑑𝑏 𝑑𝑣!

𝔼,#∼.# h𝑝! 𝑣! = i
,#
𝑣! ⋅ 𝑥! 𝑣! − i

6/7

,#
𝑥! 𝑏 𝑑𝑏 𝑓! 𝑣! 𝑑𝑣!

Rearrange terms 
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Proof

= i
,#
𝑣! ⋅ 𝑥! 𝑣! 𝑓! 𝑣! 𝑑𝑣! − i

,#
i
6/7

,#
𝑥! 𝑏 𝑓! 𝑣! 𝑑𝑏 𝑑𝑣!

𝔼,#∼.# h𝑝! 𝑣! = i
,#
𝑣! ⋅ 𝑥! 𝑣! − i

6/7

,#
𝑥! 𝑏 𝑑𝑏 𝑓! 𝑣! 𝑑𝑣!

= i
,#
𝑣! ⋅ 𝑥! 𝑣! 𝑓! 𝑣! 𝑑𝑣! − i

6
i
,#86

𝑥!(𝑏) 𝑓! 𝑣! 𝑑𝑣!𝑑𝑏

Exchange of integral variable order
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Proof

= i
,#
𝑣! ⋅ 𝑥! 𝑣! 𝑓! 𝑣! 𝑑𝑣! − i

,#
i
6/7

,#
𝑥! 𝑏 𝑓! 𝑣! 𝑑𝑏 𝑑𝑣!

𝔼,#∼.# h𝑝! 𝑣! = i
,#
𝑣! ⋅ 𝑥! 𝑣! − i

6/7

,#
𝑥! 𝑏 𝑑𝑏 𝑓! 𝑣! 𝑑𝑣!

= i
,#
𝑣! ⋅ 𝑥! 𝑣! 𝑓! 𝑣! 𝑑𝑣! − i

6
i
,#86

𝑥!(𝑏) 𝑓! 𝑣! 𝑑𝑣!𝑑𝑏

= i
,#
𝑣! ⋅ 𝑥! 𝑣! 𝑓! 𝑣! 𝑑𝑣! − i

6
𝑥!(𝑏)(1 − 𝐹!(𝑏)) 𝑑𝑏

Since ∫"")* 𝑓! 𝑣! 𝑑𝑣! = 1 − 𝐹!(𝑏)
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Proof

= i
,#
𝑣! ⋅ 𝑥! 𝑣! 𝑓! 𝑣! 𝑑𝑣! − i

,#
i
6/7

,#
𝑥! 𝑏 𝑓! 𝑣! 𝑑𝑏 𝑑𝑣!

𝔼,#∼.# h𝑝! 𝑣! = i
,#
𝑣! ⋅ 𝑥! 𝑣! − i

6/7

,#
𝑥! 𝑏 𝑑𝑏 𝑓! 𝑣! 𝑑𝑣!

= i
,#
𝑣! ⋅ 𝑥! 𝑣! 𝑓! 𝑣! 𝑑𝑣! − i

6
i
,#86

𝑥!(𝑏) 𝑓! 𝑣! 𝑑𝑣!𝑑𝑏

= i
,#
𝑣! ⋅ 𝑥! 𝑣! 𝑓! 𝑣! 𝑑𝑣! − i

6
𝑥!(𝑏)(1 − 𝐹!(𝑏)) 𝑑𝑏

= i
,#
𝑣! ⋅ 𝑥! 𝑣! 𝑓! 𝑣! 𝑑𝑣! − i

,#
𝑥! 𝑣! 1 − 𝐹! 𝑣! 𝑑𝑣!
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Proof

= i
,#
𝑣! ⋅ 𝑥! 𝑣! 𝑓! 𝑣! 𝑑𝑣! − i

,#
i
6/7

,#
𝑥! 𝑏 𝑓! 𝑣! 𝑑𝑏 𝑑𝑣!

𝔼,#∼.# h𝑝! 𝑣! = i
,#
𝑣! ⋅ 𝑥! 𝑣! − i

6/7

,#
𝑥! 𝑏 𝑑𝑏 𝑓! 𝑣! 𝑑𝑣!

= i
,#
𝑣! ⋅ 𝑥! 𝑣! 𝑓! 𝑣! 𝑑𝑣! − i

6
i
,#86

𝑥!(𝑏) 𝑓! 𝑣! 𝑑𝑣!𝑑𝑏

= i
,#
𝑣! ⋅ 𝑥! 𝑣! 𝑓! 𝑣! 𝑑𝑣! − i

6
𝑥!(𝑏)(1 − 𝐹!(𝑏)) 𝑑𝑏

= i
,#
𝑣! ⋅ 𝑥! 𝑣! 𝑓! 𝑣! 𝑑𝑣! − i

,#
𝑥! 𝑣! 1 − 𝐹! 𝑣! 𝑑𝑣!

= i
,#
𝑥! 𝑣! ⋅ 𝑣!𝑓! 𝑣! − 1 − 𝐹! 𝑣! 𝑑𝑣!

= i
,#
𝑥! 𝑣! ⋅ 𝑓!(𝑣!) 𝑣! −

1 − 𝐹! 𝑣!
𝑓!(𝑣!)

𝑑𝑣!

= 𝔼,#∼.# 𝜙! 𝑣! 𝑥(𝑣!)
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Step 3: Deriving the Optimal Auction

ØRevenue of any BIC mechanism equals ∑!/&$ 𝔼,#∼.# 𝜙! 𝑣! 𝑥(𝑣!)

Q: how to extract the maximum revenue then?

1. Elicit buyer values 𝑣& , ⋯ , 𝑣$ and calculate virtual values 𝜙!(𝑣!)

2. If 𝜙! 𝑣! < 0 for all 𝑖, keep the item and no payments (why?)

3. Otherwise, allocate item to 𝑖∗ = argmax
!∈[$]

𝜙!(𝑣!)

4. How much to charge? Myerson’s lemma says there is a unique
interim payment

• Charging minimum bid needed to win 𝜙!%' max max+,!∗
𝜙+(𝑣+) , 0 works.

The optimal auction
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1. Elicit buyer values 𝑣& , ⋯ , 𝑣$ and calculate virtual values 𝜙!(𝑣!)

2. If 𝜙! 𝑣! < 0 for all 𝑖, keep the item and no payments (why?)

3. Otherwise, allocate item to 𝑖∗ = argmax
!∈[$]

𝜙!(𝑣!), charge him the
minimum bid needed to win 𝜙!0& max max45!∗

𝜙4(𝑣4) , 0 ; others
pay 0

Step 3: Deriving the Optimal Auction

Observations.
ØThe allocation rule maximizes virtual welfare point-point, thus also 

maximizes expected virtual welfare

ØBy previous lemma, this is the maximum possible revenue

ØPayment satisfies Myerson’s lemma (check it)

Are we done? 
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A Wrinkle

ØOne more thing – Myerson lemma requires the interim allocation to 
be monotone

ØWhen 𝜙! 𝑣! = 𝑣! −
&01#(,#)
.#(,#)

is monotone in 𝑣!, allocation is monotone

ØFortunately, most natural distributions will lead to monotone VV 
function (e.g., Gaussian, uniform, exp, etc.)
• Such a distribution is called regular

Conclusion. When values are drawn from regular distributions 
independently, previous auction (aka Myerson’s optimal 
auction) is a revenue-optimal mechanism!

Can be extended to non-regular distributions via ironing, but won’t cover 
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