Lec 2: Myerson's Revenue-Optimal Auction

Guest Lectures at ZJU Computer Science (Summer 2024)

Instructor: Haifeng Xu

Problem Setup and Simplifications

The Revenue-Optimal Auction

Key Proof Ideas

Recap: Single-Item Allocation

- > A single and indivisible item, *n* buyers $\{1, \dots, n\} = [n]$
- > Buyer *i* has a (private) value $v_i \in V_i$ about the item
- > Outcome: choice of the winner of the item, and payment p_i from each buyer i
- >Objectives: maximize revenue
 - Last lecture: VCG auction maximizes welfare (even for multiple items)

The Mechanism Design Problem

Mechanism Design for Single-Item Allocation Described by $\langle n, V, X, u \rangle$ where: $\geq [n] = \{1, \dots, n\}$ is the set of *n* buyers $\geq V = V_1 \times \dots \times V_n$ is the set of all possible value profiles $\geq X = \{x \in [0,1]^n : \sum_i x_i \le 1\}$ = set of all possible allocation rules $\geq u = (u_1, \dots, u_n)$ where $u_i = v_i x_i - p_i$ is the utility function of *i* for any outcome $x \in X$ and payment p_i required from *i*

Objective: maximize revenue $\sum_{i \in [n]} p_i$

Cannot have any guarantee without additional assumptions
Will assume public prior knowledge on buyer values v_i's.
For today, always assume v_i ~ f_i independently

The Mechanism Design Problem

Mechanism Design for Single-Item Allocation Described by $\langle n, V, X, u \rangle$ where: $\geq [n] = \{1, \dots, n\}$ is the set of *n* buyers $\geq V = V_1 \times \dots \times V_n$ is the set of all possible value profiles $\geq X = \{x \in [0,1]^n : \sum_i x_i \le 1\}$ = set of all possible allocation rules $\geq u = (u_1, \dots, u_n)$ where $u_i = v_i x_i - p_i$ is the utility function of *i* for any outcome $x \in X$ and payment p_i required from *i*

Remarks:

>(Naturally) assume all players maximize expected utilities

 \succ Will guarantee $\mathbb{E}[u_i] \ge 0$ (a.k.a., individually rational or IR)

• Otherwise, players would not even bother coming to your auction

The Design Space (i.e., Possible Mechanisms)

A mechanism (i.e., the game) is specified by ⟨A, g⟩ where:
> A = A₁×···× A_n where A_i is allowable actions for buyer i
> g: A → [x, p] maps any a = (a₁, ..., a_n) ∈ A to
[an allocation outcome x(a) & a vector of payments p(a)]

> That is, we will design a game $\langle A, g \rangle$

> Players' utility function will be fully determined by $\langle A, g \rangle$

> This is a game with incomplete information – v_i is privately known to player *i*; all other players only know its prior distribution

The Design Space (i.e., Possible Mechanisms)

A mechanism (i.e., the game) is specified by ⟨A, g⟩ where:
> A = A₁×···× A_n where A_i is allowable actions for buyer i
> g: A → [x, p] maps any a = (a₁, ···, a_n) ∈ A to
[an allocation outcome x(a) & a vector of payments p(a)]

Example 1: first-price auction

- \succ $A_i = \mathbb{R}_+$ for all *i*
- > g(a) allocates the item to the buyer $i^* = \arg \max_{i \in [n]} a_i$ and asks

 i^* to pay a_{i^*} , and all other buyers pay 0

The Design Space (i.e., Possible Mechanisms)

A mechanism (i.e., the game) is specified by ⟨A, g⟩ where:
> A = A₁×···× A_n where A_i is allowable actions for buyer i
> g: A → [x, p] maps any a = (a₁, ..., a_n) ∈ A to
[an allocation outcome x(a) & a vector of payments p(a)]

Key Challenge 1

- > Design space $\langle A, g \rangle$ generally can be arbitrary and too large
- ➢ E.g, the following is a valid though weird mechanism
 - \succ $A_i = \{jump \ twice \ (J), \ kick \ in \ a \ penalty \ ball \ (L)\}$
 - \succ x(a) gives the item to anyone of L uniformly at random
 - \succ p(a) asks winner to pay #Jumps

The Solution: Revelation Principle

That is, an observation stating that focusing on certain natural class of mechanisms is **without loss of generality**

Direct Revelation Mechanisms

Definition. A mechanism $\langle A, g \rangle$ is a direct revelation mechanism if $A_i = V_i$ for all *i*. In this case, mechanism is described only by *g*.

- That is, the action for each player is to "report" her value (but they don't have to be honest...yet)
- Examples: second-price auction, first-price auction
- >Note: this constrains our design space as it limits choice of A_i 's
 - It will not reduce our best achievable revenue, as turned out

Incentive-Compatibility (IC)

Definition. A direct revelation mechanism g is Bayesian incentive-compatible (a.k.a., truthful or BIC) if truthful bidding forms a Bayes Nash equilibrium in the resulting game

>A similar but stronger IC requirement

Definition. A direct revelation mechanism g is Dominant-Strategy incentive-compatible (a.k.a., truthful or DSIC) if truthful bidding is a dominant-strategy equilibrium in the resulting game

>A DSIC mechanism is also BIC

Incentive-Compatibility: Examples

Second-price auction is DSIC, and thus also BIC.

First-price auction is not BIC, neither DSIC.

Example (posted price mechanism). Auctioneer simply posts a fixed price p to players in sequence until one buyer accepts.

- Not a direct revelation mechanism as buyer's action is only to accept or not accept, but not report their value (hence no BIC)
- >But this can be converted to an equivalent direct BIC mechanism:
 - 1. Ask each buyer to report their value v_i
 - 2. Designer accepts iff $v_i \ge p$ and charges p (essentially, designer simulates buyer's actions in the original mechanism)

The Revelation Principle

Theorem. For any mechanism achieving revenue R at a Bayes Nash equilibrium [resp. dominant-strategy equilibrium], there is a direct revelation, Bayesian incentive-compatible [resp. DSIC] mechanism achieving revenue R.

Remarks

- Can be stated more generally, but this version is sufficient for our purpose of optimal auction design
 - The same proof idea: simulating buyer's actions in original mechanism

>Can thus focus on BIC mechanisms henceforth

The Revelation Principle

Theorem. For any mechanism achieving revenue R at a Bayes Nash equilibrium [resp. dominant-strategy equilibrium], there is a direct revelation, Bayesian incentive-compatible [resp. DSIC] mechanism achieving revenue R.

This simplifies our mechanism design task

Optimal Mechanism Design for Single-Item Allocation

Given instance $\langle n, V, X, u \rangle$, supplemented with prior $\{f_i\}_{i \in [n]}$, design the allocation function $x: V \to X$ and payment $p: V \to \mathbb{R}^n$ such that truthful bidding is a BNE in the following Bayesian game:

- 1. Solicit bid $b_1 \in V_1, \dots, b_n \in V_n$
- 2. Select allocation $x(b_1, \dots, b_n) \in X$ and payment $p(b_1, \dots, b_n)$

Design goal: maximize expected revenue

Problem Setup and Simplifications

The Revenue-Optimal Auction

Key Proof Ideas

Optimal (Bayesian) Mechanism Design

Previous formulation and simplification leads to the following optimization problem

$$\max_{x,p} \mathbb{E}_{v \sim f} \sum_{i=1}^{n} p_i(v_1, \dots, v_n)$$
BIC constraints
s.t.
$$\mathbb{E}_{v_{-i} \sim f_{-i}} [v_i x_i(v_i, v_{-i}) - p_i(v_i, v_{-i})] \\ \geq \mathbb{E}_{v_{-i} \sim f_{-i}} [v_i x_i(b_i, v_{-i}) - p_i(b_i, v_{-i})], \qquad \forall i \in [n], v_i, b_i \in V_i \\ \mathbb{E}_{v_{-i} \sim f_{-i}} [v_i x_i(v_i, v_{-i}) - p_i(v_i, v_{-i})] \geq 0, \qquad \forall i \in [n], v_i \in V_i \\ x(v) \in X, \qquad \text{Individually rational (IR)} \qquad \forall v \in V \\ \text{constraints} \end{cases}$$

Optimal (Bayesian) Mechanism Design

Previous formulation and simplification leads to the following optimization problem

$$\begin{split} \max_{x,p} & \mathbb{E}_{v \sim f} \sum_{i=1}^{n} p_{i}(v_{1}, \cdots, v_{n}) \\ \text{s.t.} & \mathbb{E}_{v_{-i} \sim f_{-i}} \left[v_{i} x_{i}(v_{i}, v_{-i}) - p_{i}(v_{i}, v_{-i}) \right] \\ & \geq \mathbb{E}_{v_{-i} \sim f_{-i}} \left[v_{i} x_{i}(b_{i}, v_{-i}) - p_{i}(b_{i}, v_{-i}) \right], \quad \forall i \in [n], v_{i}, b_{i} \in V_{i} \\ & \mathbb{E}_{v_{-i} \sim f_{-i}} \left[v_{i} x_{i}(v_{i}, v_{-i}) - p_{i}(v_{i}, v_{-i}) \right] \geq 0, \quad \forall i \in [n], v_{i} \in V_{i} \\ & x(v) \in X, \qquad \forall v \in V \end{split}$$

> This problem is challenging because we are optimizing over functions $x: V \to X$ and $p: V \to \mathbb{R}^n$

Optimal DSIC Mechanism Design

Designing optimal DSIC mechanism is a strictly more constrained optimization problem

$$\max_{x,p} \mathbb{E}_{v \sim f} \sum_{i=1}^{n} p_{i}(v_{1}, \dots, v_{n})$$
s.t.
$$\begin{bmatrix} v_{i}x_{i}(v_{i}, v_{-i}) - p_{i}(v_{i}, v_{-i}) \end{bmatrix} \qquad \forall v_{-i}$$

$$\geq \begin{bmatrix} v_{i}x_{i}(b_{i}, v_{-i}) - p_{i}(b_{i}, v_{-i}) \end{bmatrix}, \quad \forall i \in [n], v_{i}, b_{i} \in V_{i}$$

$$\mathbb{E}_{v_{-i} \sim f_{-i}} \begin{bmatrix} v_{i}x_{i}(v_{i}, v_{-i}) - p_{i}(v_{i}, v_{-i}) \end{bmatrix} \geq 0, \qquad \forall i \in [n], v_{i} \in V_{i}$$

$$x(v) \in X, \qquad \forall v \in V$$

Corollary. Optimal DSIC mechanism achieves revenue at most that of optimal BIC mechanism.

Myerson's Optimal Auction

Theorem (informal). For single-item allocation with prior distribution $v_i \sim f_i$ independently, the following auction is BIC and optimal:

- 1. Solicit buyer values v_1, \dots, v_n
- 2. Transform v_i to "virtual value" $\phi_i(v_i)$ where $\phi_i(v_i) = v_i \frac{1 F_i(v_i)}{f_i(v_i)}$
- 3. If $\phi_i(v_i) < 0$ for all *i*, keep the item and no payments
- 4. Otherwise, allocate item to $i^* = \arg \max_{i \in [n]} \phi_i(v_i)$ and charge him the minimum bid needed to win, i.e., $\phi_i^{-1} \left(\max \left(\max_{j \neq i^*} \phi_j(v_j), 0 \right) \right)$; Other bidders pay 0.

It turns out to deeply relate to, though critically differ from, second price auction.

Remarks

Myerson's optimal auction is noteworthy for many reasons

- >Matches practical experience: when buyer values are i.i.d, optimal auction is a second price auction with reserve $\phi^{-1}(0)$.
- > Applies to "single parameter" problems more generally
- The optimal BIC mechanism just so happens to be DSIC and deterministic!!
 - Not true for multiple items there exists revenue gap even when selling two items to two bidders

Problem Setup and Simplifications

The Revenue-Optimal Auction

Key Proof Ideas

Key Quantities

> Expected winning probability of buyer *i*, as a function of bid b_i $x_i(b_i) = \mathbb{E}_{v_{-i} \sim f_{-i}} x_i(b_i, v_{-i})$

Similarly, expected payment

$$p_i(\mathbf{b}_i) = \mathbb{E}_{\mathbf{v}_{-i} \sim f_{-i}} p_i(\mathbf{b}_i, \mathbf{v}_{-i})$$

➤ Consequently,

• Expected bidder utility of b_i

$$v_i x_i(\underline{b_i}) - p_i(\underline{b_i})$$

• If BIC, expected revenue

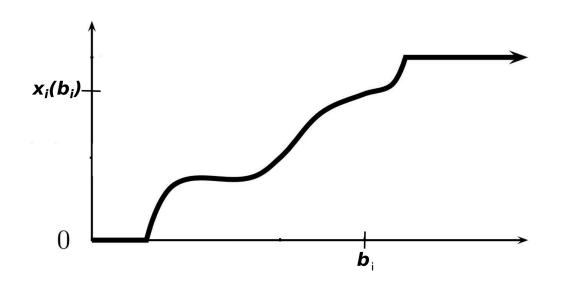
$$\sum_{i=1}^{n} \mathbb{E}_{v_i \sim f_i} p_i(v_i)$$

Step I: Myerson's Monotonicity Lemma

Lemma. Consider single-item allocation with prior distribution $v_i \sim f_i$ independently. A direct-revelation mechanism with interim allocation x and interim payment p is BIC if and only if for each buyer i:

- *1.* $x_i(b_i)$ is a monotone non-decreasing function of b_i
- *2.* $p_i(b_i)$ is uniquely determined as follows

$$p_i(b_i) = b_i \cdot x_i(b_i) - \int_{b=0}^{b_i} x_i(b) \, db$$
.

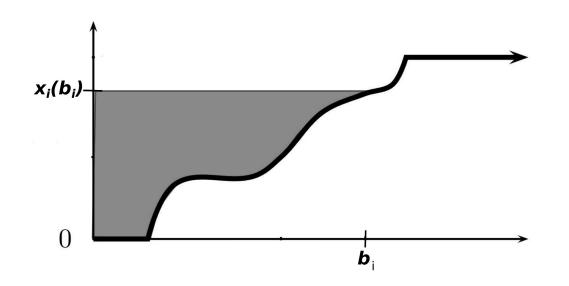


Step I: Myerson's Monotonicity Lemma

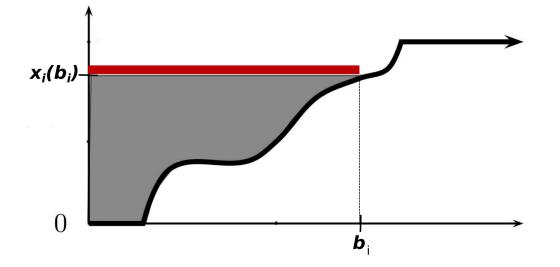
Lemma. Consider single-item allocation with prior distribution $v_i \sim f_i$ independently. A direct-revelation mechanism with interim allocation x and interim payment p is BIC if and only if for each buyer i:

- *1.* $x_i(b_i)$ is a monotone non-decreasing function of b_i
- *2.* $p_i(b_i)$ is uniquely determined as follows

$$p_i(b_i) = b_i \cdot x_i(b_i) - \int_{b=0}^{b_i} x_i(b) \, db$$
.



Interpretation of Myerson's Lemma



> The higher a player bids, the higher the probability of winning

- > For each additional ϵ increase of winning probability, pay additionally at a rate equal to the current bid
- ➢ Proof omitted here

Corollaries of Myerson's Lemma

Corollaries.

- 1. Interim allocation uniquely determines interim payment
- 2. Expected revenue depends only on the allocation rule
- 3. Any two auctions with the same interim allocation rule at BNE have the same expected revenue at the same BNE

Step 2: Revenue as Virtual Welfare

> Define the virtual value of player *i* as a function of his value v_i :

$$\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$$

Lemma. Consider any BIC mechanism *M* with interim allocation *x* and interim payment *p*, normalized to $p_i(0) = 0$. The expected revenue of *M* is equal to the expected virtual welfare served

 $\sum_{i=1}^{n} \mathbb{E}_{v_i \sim f_i} [\phi_i(v_i) x_i(v_i)]$

- >This is the expected virtual value of the winning bidder
- Proof is an application of Myerson's monotonicity lemma, plus algebraic calculations

> Recall the expected revenue is $\sum_{i=1}^{n} \mathbb{E}_{v_i \sim f_i} p_i(v_i)$

Step 2: Revenue as Virtual Welfare

> Define the virtual value of player *i* as a function of his value v_i :

$$\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$$

Lemma. Consider any BIC mechanism *M* with interim allocation *x* and interim payment *p*, normalized to $p_i(0) = 0$. The expected revenue of *M* is equal to the expected virtual welfare served

 $\sum_{i=1}^{n} \mathbb{E}_{v_i \sim f_i} [\phi_i(v_i) x_i(v_i)]$

- >This is the expected virtual value of the winning bidder
- Proof is an application of Myerson's monotonicity lemma, plus algebraic calculations

> Recall the expected revenue is $\sum_{i=1}^{n} \mathbb{E}_{v_i \sim f_i} p_i(v_i)$

Proof
$$\mathbb{E}_{v_i \sim f_i} \overline{p_i}(v_i) = \int_{v_i} \left[v_i \cdot x_i(v_i) - \int_{b=0}^{v_i} x_i(b) \, db \right] f_i(v_i) dv_i$$

By Myerson's monotonicity lemma Assumed bidder *i* bids truthfully

Proof

$$\mathbb{E}_{v_i \sim f_i} \overline{p_i} (v_i) = \int_{v_i} \left[v_i \cdot x_i(v_i) - \int_{b=0}^{v_i} x_i(b) db \right] f_i(v_i) dv_i$$

$$= \int_{v_i} v_i \cdot x_i(v_i) f_i(v_i) dv_i - \int_{v_i} \int_{b=0}^{v_i} x_i(b) f_i(v_i) db dv_i$$

Rearrange terms

Proof

$$\mathbb{E}_{v_i \sim f_i} \overline{p_i} (v_i) = \int_{v_i} \left[v_i \cdot x_i(v_i) - \int_{b=0}^{v_i} x_i(b) db \right] f_i(v_i) dv_i$$

$$= \int_{v_i} v_i \cdot x_i(v_i) f_i(v_i) dv_i - \int_{v_i} \int_{b=0}^{v_i} x_i(b) f_i(v_i) db dv_i$$

$$= \int_{v_i} v_i \cdot x_i(v_i) f_i(v_i) dv_i - \int_b \int_{v_i \geq b} x_i(b) f_i(v_i) dv_i db$$

Exchange of integral variable order

$\begin{aligned} \mathsf{Proof} \\ \mathbb{E}_{v_i \sim f_i} \, \overline{p_i} \, (v_i) &= \int_{v_i} \left[v_i \cdot x_i(v_i) - \int_{b=0}^{v_i} x_i(b) \, db \right] f_i(v_i) dv_i \\ &= \int_{v_i} v_i \cdot x_i(v_i) f_i(v_i) dv_i - \int_{v_i} \int_{b=0}^{v_i} x_i(b) \, f_i(v_i) db \, dv_i \\ &= \int_{v_i} v_i \cdot x_i(v_i) f_i(v_i) dv_i - \int_b \int_{v_i \geq b} x_i(b) \, f_i(v_i) dv_i db \\ &= \int_{v_i} v_i \cdot x_i(v_i) f_i(v_i) dv_i - \int_b x_i(b) (1 - F_i(b)) \, db \end{aligned}$

Since $\int_{v_i \ge b} f_i(v_i) dv_i = 1 - F_i(b)$

Proof $\mathbb{E}_{v_i \sim f_i} \overline{p_i} (v_i) = \int_{w_i} \left| v_i \cdot x_i(v_i) - \int_{h=0}^{v_i} x_i(b) \, db \right| f_i(v_i) dv_i$ $= \int_{u_i} v_i \cdot x_i(v_i) f_i(v_i) dv_i - \int_{u_i} \int_{b=0}^{v_i} x_i(b) f_i(v_i) db dv_i$ $= \int_{\mathcal{W}_i} v_i \cdot x_i(v_i) f_i(v_i) dv_i - \int_b \int_{\mathcal{W}_i > b} x_i(b) f_i(v_i) dv_i db$ $= \int_{\mathcal{W}_i} v_i \cdot x_i(v_i) f_i(v_i) dv_i - \int_{\mathcal{V}_i} x_i(b) (1 - F_i(b)) db$ $= \int_{\mathcal{W}_{i}} v_{i} \cdot x_{i}(v_{i}) f_{i}(v_{i}) dv_{i} - \int_{\mathcal{W}_{i}} x_{i}(v_{i}) (1 - F_{i}(v_{i})) dv_{i}$

Proof $\mathbb{E}_{v_i \sim f_i} \overline{p_i} (v_i) = \int_{v_i} \left| v_i \cdot x_i(v_i) - \int_{h=0}^{v_i} x_i(b) \, db \right| f_i(v_i) dv_i$ $= \int_{u_i} v_i \cdot x_i(v_i) f_i(v_i) dv_i - \int_{u_i} \int_{b=0}^{v_i} x_i(b) f_i(v_i) db dv_i$ $= \int_{\mathcal{W}_i} v_i \cdot x_i(v_i) f_i(v_i) dv_i - \int_b \int_{\mathcal{W}_i > b} x_i(b) f_i(v_i) dv_i db$ $= \int_{W_{i}} v_{i} \cdot x_{i}(v_{i}) f_{i}(v_{i}) dv_{i} - \int_{W_{i}} x_{i}(b) (1 - F_{i}(b)) db$ $= \int_{\mathcal{W}_i} v_i \cdot x_i(v_i) f_i(v_i) dv_i - \int_{\mathcal{W}_i} x_i(v_i) (1 - F_i(v_i)) dv_i$ $= \int x_i(v_i) \cdot \left[v_i f_i(v_i) - \left(1 - F_i(v_i)\right) \right] dv_i$ $= \int x_i(v_i) \cdot f_i(v_i) \left| v_i - \frac{\left(1 - F_i(v_i)\right)}{f_i(v_i)} \right| dv_i$ $= \mathbb{E}_{v_i \sim f_i} [\phi_i(v_i) x(v_i)]$

34

Step 3: Deriving the Optimal Auction

> Revenue of any BIC mechanism equals $\sum_{i=1}^{n} \mathbb{E}_{v_i \sim f_i} [\phi_i(v_i) x(v_i)]$

Q: how to extract the maximum revenue then?

- 1. Elicit buyer values v_1, \dots, v_n and calculate virtual values $\phi_i(v_i)$
- 2. If $\phi_i(v_i) < 0$ for all *i*, keep the item and no payments (why?)
- 3. Otherwise, allocate item to $i^* = \arg \max_{i \in [n]} \phi_i(v_i)$
- 4. How much to charge? Myerson's lemma says there is a unique interim payment
 - Charging minimum bid needed to win $\phi_i^{-1}(\max(\max_{j \neq i^*} \phi_j(v_j), 0))$ works.

The optimal auction

Step 3: Deriving the Optimal Auction

- 1. Elicit buyer values v_1, \dots, v_n and calculate virtual values $\phi_i(v_i)$
- 2. If $\phi_i(v_i) < 0$ for all *i*, keep the item and no payments (why?)
- 3. Otherwise, allocate item to $i^* = \arg \max_{i \in [n]} \phi_i(v_i)$, charge him the minimum bid needed to win $\phi_i^{-1}(\max(\max_{j \neq i^*} \phi_j(v_j), 0))$; others pay 0

Observations.

- The allocation rule maximizes virtual welfare point-point, thus also maximizes expected virtual welfare
- >By previous lemma, this is the maximum possible revenue

Payment satisfies Myerson's lemma (check it)

A Wrinkle

One more thing – Myerson lemma requires the interim allocation to be monotone

>When $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$ is monotone in v_i , allocation is monotone

- Fortunately, most natural distributions will lead to monotone VV function (e.g., Gaussian, uniform, exp, etc.)
 - Such a distribution is called regular

Conclusion. When values are drawn from regular distributions independently, previous auction (aka Myerson's optimal auction) is a revenue-optimal mechanism!

Can be extended to non-regular distributions via ironing, but won't cover

Thank You

Haifeng Xu University of Chicago haifengxu@uchicago.edu