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The Multi-Armed Bandit Problem

Multi-Armed Bandit Problem: A decision-maker (“gambler”)
chooses one of n actions (“arms”) in each time step.

Chosen arm produces random payoff from unknown distribution.

Goal: Maximize expected total payoff.



Multi-Armed Bandits: An Abbreviated History

“The [MAB] problem was
formulated during the war,
and efforts to solve it so
sapped the energies and
minds of Allied scientists
that the suggestion was
made that the problem be
dropped over Germany, as
the ultimate instrument of
intellectual sabotage.”

– P. Whittle



Multi-Armed Bandits: An Abbreviated History

MAB algorithms proposed
for sequential clinical trials
in medicine: more ethical
alternative to randomized
clinical trials.



Multi-Armed Bandits: An Abbreviated History

On the Web, MAB
algorithms used for, e.g.

1 Ad placement

2 Price experimentation

3 Crowdsourcing

4 Search



The Bayesian Multi-Armed Bandit Problem (v1)

Each arm has a type that determines its payoff distribution.

Gambler has a prior distribution over types for each arm.

Types are independent random variables.

Objective: maximize expected discounted reward,
∑∞

t=0 γ
trt .

After pulling arm i some number of times, gambler has a posterior
distribution over types. Call this the state of arm i .

State never changes except when pulled.

When pulled, state evolution is a Markov chain. (Transition
probabilities given by Bayes’ Law.)

Expected reward when pulled is governed by state.
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The Bayesian Multi-Armed Bandit Problem (v2)

Arm = Markov chain and reward function R : {States} → R.

Policy = function {State-tuples} → {arm to pull next}.
When pulling arm i at time t in state sit , it yields reward
rt = R(sit) and undergoes a state transition.

Objective: maximize expected discounted reward,
∑∞

t=0 γ
trt .
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The Bayesian Multi-Armed Bandit Problem (v2)

In increasing order of generality, can assume each arm is . . .

1 Doob martingale of an i.i.d. sampling process: state is
conditional distribution of type given history of i.i.d. samples,
R is conditional expected reward

2 martingale: arbitrary Markov chain, R satisfies expected
reward after state transition = current reward

3 arbitrary: arbitrary Markov chain, arbitrary reward function.

This talk: mostly assume martingale arms.



The Gittins index

Consider a two-armed bandit problem where

arm 1 = Markov chain M with starting state s, reward fcn. R

arm 2 yields reward ν deterministically when pulled.

Observation. Optimal policy pulls arm 1 until some stopping time
τ , arm 2 forever after that if τ <∞.

Definition (Gittins index)

The Gittins index of state s in Markov chain M is

ν(s) = sup{ν | optimal policy pulls arm 1}.

Equivalently,

ν(s) = sup

{
E[
∑τ

t=0 γ
trt ]

E[
∑τ

t=0 γ
t ]

∣∣∣∣ τ a stopping time

}
,

where r0, r1, . . . denotes the reward process of M.
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The Gittins Index Theorem

Theorem (Gittins Index Theorem)

For any multi-armed bandit problem with

finitely many arms

reward functions taking values in a bounded interval [−C ,C ]

a policy is optimal if and only if it always selects an arm with
highest Gittins index.

Remark 1. Holds for Markov chains in general, not just
martingales.

Remark 2. For martingale arms, ν(s) ≥ R(s). The difference
quantifies the value of foregoing short-term gains for future
rewards.



Independence of Irrelevant Alternatives

One consequence of Gittins Index Theorem is an independence of
irrelevant alternatives (IIA) property.

Corollary (IIA)

Consider a MAB problem with arm set U. If it is optimal to pull
arm i in state-tuple ~s, then it is also optimal to pull arm i in the
MAB problem with any arm set V such that {i} ⊆ V ⊆ U.

In fact, the Gittins Index Theorem is equivalent to IIA.



Equivalence of Gittins Index Theorem and IIA

Consider state tuple (s1, . . . , sn) with Gittins indices ν1, . . . , νn.

Let ν(1) > ν(2) be the two largest values in the set {ν1, . . . , νn}.
Add a deterministic arm with reward ν ′ ∈ (ν(2), ν(1)).

1 From this set of n + 1 arms, the optimal policy must choose
one with index ν(1). (Any other loses in a head-to-head
comparison of two arms.)

2 From the original set of n arms, the optimal policy must
choose one with index ν(1).

Remark. IIA seems so much more natural than Gittins’ Theorem,
it’s tempting to try proving IIA directly. Remarkably, no direct
proof of IIA is known.
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Proof of Gittins Index Theorem (Weber, 1992)

Consider a single-arm stopping game where the player can either

1 stop in any state s,

2 pay ν, receive reward R(s), observe next state transition.

A stopping rule is optimal if and only if it stops whenever ν(s) < ν
and keeps going whenever ν(s) > ν.

To encourage playing forever, whenever we arrive at state s such
that ν(s) < ν we could lower the charge from ν to ν(s).

Definition (Prevailing charge process)

If s0, s1, . . . denotes a state sequence sampled from Markov chain
M the prevailing charge process is the sequence κ(0), κ(1), . . .
defined by

κ(t) = min{ν(s0), ν(s1), . . . , ν(st)}.
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Proof of Gittins Index Theorem (Weber, 1992)

In the prevailing charge game for Markov chain M, the charge for
playing at time t is κ(t).

Lemma

In the prevailing charge game, the expected net payoff of any
stopping rule is non-positive. It equals zero iff the rule never stops
in a state whose Gittins index exceeds the prevailing charge.

Proof idea. Break time into intervals on which κ(t) is constant.

Remark. Lemma still holds if there is also a “pausing” option at
every time. A strategy breaks even if and only if it never stops or
pauses except when ν(st) = κ(t).
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Proof of Gittins Index Theorem (Weber, 1992)

Proof of Gittins Index Theorem. Suppose π is the Gittins index
policy and σ is any other policy.

Couple the executions of π, σ by assuming each arm goes through
the same state sequence. (So π, σ differ only in how they
interleave the state transitions.)

Theorem will follow from

E[Reward(π)] = E[PrevChg(π)]

E[Reward(σ)] ≤ E[PrevChg(σ)]

E[PrevChg(σ)] ≤ E[PrevChg(π)].

First two lines arise from our lemma.
Third line arises from our coupling.



Proof of Gittins Index Theorem (Weber, 1992)

Prevailing charge sequences:

Arm 1: 5,3,3,1,1,1,. . .

π: 6,5,4,4,4,3,3,3,2,2,2,. . .

Arm 2: 4,4,4,2,2,2,. . .

σ: 5,4,6,3,4,3,3,4,2,1,2,. . .

Arm 3: 6,3,1,1,1,1,. . .

PrevChg(π) = 6 + 5γ + 4γ2 + 4γ3 + 4γ4 + 3γ5 + · · ·
PrevChg(σ) = 5 + 4γ + 6γ2 + 3γ3 + 4γ4 + 3γ5 + · · ·

Policy π sorts the prevailing charges in decreasing order.

This maximizes the discounted sum, QED.
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Gittins Index Calculation: “Collapsing” Arms

A collapsing arm is one of two types: G (good) or B (bad).

G always yields reward M, B always yields reward 0.

Pr(G ) = p,Pr(B) = 1− p.

What is its Gittins index? If arm 1 is collapsing and arm 2 is
deterministic with reward ν, compare:

1 π: Play arm 1 once, play the better arm thenceforward.

V (π) = p
(

M
1−γ

)
+ (1− p)

(
γ

1−γ

)
ν

2 σ: Play arm 2 forever. V (σ) =
(

1
1−γ

)
ν

Equating the two values, ν = pM
1−(1−p)γ .



Gittins Index Versus Expected Reward

For martingale arms, ν(s) ≥ R(s). The difference quantifies the
value of foregoing short-term gains for future rewards.

What are the possible values of ν(s) for martingales?

Initial state of a collapsing arm has R(s) = pM, ν(s) = pM
1−(1−p)γ ,

which shows that ν(s) can take any value in [R(s), R(s)
1−γ ).

No other ratio is possible.
If arm 2 yields reward ν ≥ R(s)

1−γ and π plays arm 1 at time 0, then
E[rt ] is R(s) at t = 0 and less than R(s) + ν afterward, so

V (π) <
R(s)

1− γ
+

γν

1− γ
≤ ν +

γν

1− γ
= V (σ),

where σ is the policy that always plays arm 2.



Recap: Gittins Index

Multi-Armed Bandit Problem

Fundamental abstraction of sequential learning with “explore
vs. exploit” dilemmas.

Modeled by n-tuple of Markov chains with rewards on states.

Arms undergo state transitions only when pulled.

Objective: maximize geometric (rate γ) discounted reward.

Gittins Index Policy

A reduction from multi-armed bandits to two-armed bandits.

Gittins index ν(s) defined so that optimal policy is indifferent
between arm in state s or deterministic arm with reward ν(s).

Optimal policy: always pull arm with highest Gittins index.



Fragility of the Gittins Index Theorem

Warning! The Gittins Index Theorem is beautiful but non-robust.

Vary any assumption, and you get a problem to be deployed
against enemy scientists in the present day!

Examples

1 non-geometric discounting, e.g. fixed time horizon.

2 arms with correlated priors

3 actions affecting more than one arm at a time

4 payoffs depending on state of 2 or more arms

5 delayed feedback

6 “restless” arms that change state without being pulled

7 non-additive objectives (e.g. risk-aversion)

8 switching costs
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