Lecture 10: Actor-Critic Methods

Shiyu Zhao
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Introduction

Actor-critic methods are still policy gradient methods.

e They emphasize the structure that incorporates the policy gradient and

value-based methods.
What are “actor” and “critic”?

e Here, “actor” refers to policy update. It is called actor is because the policies
will be applied to take actions.

e Here, “critic” refers to policy evaluation or value estimation. It is called critic

because it criticizes the policy by evaluating it.
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Advantage actor-critic (A2C)
m Baseline invariance

m The algorithm of advantage actor-critic
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The simplest actor-critic (QAC)
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The simplest actor-critic

Revisit the idea of policy gradient introduced in the last lecture.
1) A scalar metric J(6), which can be o, or 7.
2) The gradient-ascent algorithm maximizing J(6) is
041 = 0: + aVoJ(6¢)
=0, + aEsn Ar [w In7(A|S, 0:)qx (S, A)]

3) The stochastic gradient-ascent algorithm is

[9t+1 = 0: + aVg Inm(a|st, 0:)q:(se, at)j

This expression is very important! We can directly see “actor” and ‘“critic”
from it:

e This expression corresponds to actor!

e The algorithm estimating q:(s, a) corresponds to critic!
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The simplest actor-critic

How to get g:(s¢, at)?

So far, we have studied two ways to estimate action values:

e Monte Carlo learning: If MC is used, the corresponding algorithm is called
REINFORCE or Monte Carlo policy gradient.
e We introduced in the last lecture.

e Temporal-difference learning: If TD is used, such kind of algorithms are
usually called actor-critic.

o We will introduce in this lecture.
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The simplest actor-critic

The simplest actor-critic algorithm (QAC)

Initialization: A policy function 7 (a|s, 6o) where g is the initial parameter.
A value function ¢(s, a, wo) where wy is the initial parameter. ., ag > 0.

Goal: Learn an optimal policy to maximize J(6).

At time step t in each episode, do
Generate a; following 7(als¢, 6;), observe r¢11, st+1, and then gener-
ate as41 following 7(a|st41, 6:).
Actor (policy update):
041 = 0: + aoVo Inm(at|se, 0:)q(st, ar, w)
Critic (value update):
Wi = wr + Oy [Tt+1 +  vq(St41,at41,we) —

q(8t7 ag, wi)] qu(St, at, U}t)
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The simplest actor-critic

Remarks:

e The critic corresponds to “SARSA+value function approximation”.

e The actor corresponds to the policy update algorithm.

e This particular actor-citric algorithm is sometimes referred to as Q
Actor-Critic (QAC).

e Though simple, this algorithm reveals the core idea of actor-critic methods.

It can be extended to generate many other algorithms as shown later.
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Advantage actor-critic (A2C)
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Introduction

Next, we extend QAC to advantage actor-critic (A2C)

e The core idea is to introduce a baseline to reduce variance.
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Advantage actor-critic (A2C)

m Baseline invariance
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Baseline invariance

Property: the policy gradient is invariant to an additional baseline:
VoJ(8) = Esn ann [ve In7(A|S, 0:)gx (S, A)]
= Eswy,a~r Vo lnm(A]5,0.)(4x(5, 4) - b(5))]
Here, the additional baseline b(.S) is a scalar function of S.

Next, we answer two questions:
e Why is it valid?
e Why is it useful?
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Baseline invariance

First, why is it valid?
That is because

Esn Aon [vg In(A|S, et)b(S)] =0
The details:

Es~n,A~r [Ve Inw(Al|S, 0:)b } Zn Z (als, 0:)VeInm(als, 6:)b(s)

SES acA

= n(s) Y _ Vor(als,0.)b(s)
sES acA

=> n(s)b(s) > Vor(als,6:)
sES acA

= Z n(s)b(s)Ve Z w(als, 6:)
s€S acA

= Zn s)Vel =0
sES
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Baseline invariance

Second, why is the baseline useful?
The gradient is Vo J(0) = E[X] where

X(S, A) = VoInw(A|S, 0;)[gx(S, A) — b(S)]

We have
e E[X] is invariant to b(S5).
e var(X) is NOT invariant to b(S).
e Why? Because tr[var(X)] = E[XTX] — 27 and

E[X"X] =E {(vg Inm)7 (Ve In7)(gn(S, A) — b(S))Q]
=E [||Ve In7|?(g~(S, A) — b(S))*]

See the proof in my book.

Shiyu Zhao 14 /55



Baseline invariance

Our goal: Select an optimal baseline b to minimize var(X)

e Benefit: when we use a random sample to approximate E[X], the estimation

variance would also be small.

In the algorithms of REINFORCE and QAC,
e There is no baseline.

e Or, b =0, which is not guaranteed to be a good baseline.
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Baseline invariance

e The optimal baseline that can minimize var(X) is, for any s € S,

b*(s) = EANW[HVG 1I17T(A|57 91,)“2(]7((8, A)]
Eanx[VoInm(Als,0:)]

See the proof in my book.
e Although this baseline is optimal, it is complex.

e We can remove the weight || Vg Inm(A|s, 6;)||* and select the suboptimal

baseline:
b(s) = Ea~r[gr(s, A)] = vx(s)

which is the state value of s!
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Advantage actor-critic (A2C)

m The algorithm of advantage actor-critic
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The algorithm of advantage actor-critic

When b(s) = v (s):

e The gradient-ascent algorithm is
for1 = 0 + oF [vg In7(A|S, 0:)[gn (S, A) — /UW(S)]]
=0, +aE [vg In(A|S, 8:)5 (S, A)]

where
6‘"(37 A) = qW(Sa A) - 7)7T(S)

is called the advantage function (why called advantage?).

e The stochastic version is

011 = 0: + Vo In7(at|ss, 0t )[q: (¢, ar) — vi(st)]
= Qt + OCVQ lnw(at|st, Gt)ét(st, CLt)
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The algorithm of advantage actor-critic

Furthermore, the advantage function is approximated by the TD error:

0y = Qt(Sz, at) - Ut(St)% Te41 + ’71)t(5t+1) - Ut(St)
e This approximation is reasonable because

E[gx (S, A) — vx(S)|S = 51, A = az] = E[R+w,r(s') —vr(9)|S = 51, A = at]

e Benefit: only need one network to approximate v (s) rather than two

networks for ¢-(s,a) and vx(s).
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The algorithm of advantage actor-critic

Interpretation of the A2C algorithm:

9,5.‘.1 = 9t + aVe In ﬂ'(at|8t, 0t)5t(st, LLt)
Vgﬂ(at\st,et)

= 0t (8¢, a
0: + w(az]st, 60) ¢ (8¢, at)
_ 5t(5t>at)
=60;+a (ﬂ(at\st,et) Vo (at|st, 0r)
Bt

Then,
greater d:(s¢, ar) = greater 3, =—> greater 7(a¢|st, Or41)
smaller 7(a¢|st, 0:) = greater B; = greater 7(a¢|st, O¢+1)

See the analysis of a similar case in the last lecture.

e |t can well balance exploration and exploitation.

e What matters is the relative value d; rather than the absolute value ¢;, which
is more reasonable.
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The algorithm of advantage actor-critic

Advantage actor-critic (A2C) or TD actor-critic

Initialization: A policy function 7(als, 6o) where 6y is the initial parameter. A
value function v(s, wg) where wo is the initial parameter. au,,ay > 0.
Goal: Learn an optimal policy to maximize J(6).

At time step t in each episode, do
Generate a; following 7(a|st,0:) and then observe ri41,s¢41.
Advantage (TD error):
0t = i1 + Yu(st41,we) — v(se, we)
Actor (policy update):
91+1 =0t + 9otV In 7r(at|st, 91)
Critic (value update):
W41 = Wt + awétvwv(st, wt)

It is on-policy.
Since the policy 7(6;) is stochastic, no need to use techniques like e-greedy.
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Off-policy actor-critic
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Introduction

e Policy gradient is on-policy.

e Why? because the gradient is Vo J(6) = Es~n, a~r[*]

e Can we convert it to off-policy?

e Yes, by importance sampling
e The importance sampling technique is not limited to AC, but also to any
algorithm that aims to estimate an expectation.
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Off-policy actor-critic

m lllustrative examples
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[llustrative examples

Consider a random variable X € X = {+1, —1}.
If the probability distribution of X is po:

po(X =+4+1)=0.5, po(X=-1)=05
then the expectation of X is

Expo[X] = (+1) - 0.5+ (=1) - 0.5 = 0.

Question: how to estimate E[X] by using some samples {z;}?
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[llustrative examples

Case 1 (we are already familiar):

e The samples {z;} are generated according to po:
E[z;] = E[X], var[z;] = var[X]

Then, the average value can converge to the expectation:
1 n
Ezﬁzlxi%IE[X}, as n — 0o
=

See the law of large numbers.
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[llustrative examples

Figure: Samples and z — E[X]
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[llustrative examples

Case 2 (a new case that we want to study):
e The samples {x;} are generated according to another distribution p1:

p1(X =4+1)=08, pi(X=-1)=02
The expectation is
Exep, [X] = (+1) - 0.8 4+ (=1) - 0.2 = 0.6

If we use the average of the samples, then without suprising

I
T= g;m — Exrp, [X] = 0.6 # Exrp [X] =0
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[llustrative examples

Question: Can we use {z;} ~ p; to estimate Ex.,,[X]?

e Why to do that?
We may want to estimate E s~ [x] where 7 is the target policy based on the
samples of a behavior policy 3.

e How to do that?

e We can't achieve that if directly using Z:
T — EXNPI [X] = 0.6 3& EXNPO[X] =0

e We can achieve that by using the importance sampling technique.
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[llustrative examples

Figure: Samples and Z — Ex~1[X] (the dotted line)
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Off-policy actor-critic

m Importance sampling
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Importance sampling

Note that
(z)
Exp[X] = L ple)s = S pi(e) Do = B [/(X)]
L \W_/
f(z)

e Thus, we can estimate Exp,[X] by estimating Ex~p, [f(X)].
e How to estimate Ex~p, [f(X)]? Easy. Let

_ 1 n
- = a h .
f n;f(x) where x; ~ p1

Then,

f=Exop[f(X)], asn—oo
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Importance sampling

Therefore, f is a good approximation for Ex p, [f(X)] = Exn~p[X]

_ 1 & 1 = po(zi)
E ~D = — =
X 10 f = 2:: o ; I (ZL

° % is called the importance weight.
e If p1(z:) = po(z;), the importance weight is one and f becomes z.
e If po(x;) > p1(x;), z; can be more often sampled by po than pi. The

importance weight (> 1) can emphasize the importance of this sample.
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Importance sampling

You may ask: While f = 135" Z‘fglgml requires po(z), if | know po(z), why

not directly calculate the expectation?

Answer: We may only be able to obtain po(x) of a given z, but not all .

e For example, continuous case, complex expression of pg, or no expression of
po (e.g., po represented by a neural network).
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Importance sampling

Summary: if {z;} ~ p1,
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Off-policy actor-critic

m The theorem of off-policy policy gradient
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The theorem of off-policy policy gradient

Like the previous on-policy case, we need to derive the policy gradient in the

off-policy case.
e Suppose [ is the behavior policy that generates experience samples.

e Our goal is to use these samples to update the target policy () that can

optimize the metric

J(0) =Y _ dp(s)or(s) = Esnag [vr(S)]

SES

where dg is the stationary distribution under policy f.
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The theorem of off-policy policy gradient

Theorem (Off-policy policy gradient theorem)
In the discounted case where v € (0,1), the gradient of J(0) is

Ve J(0) = Es~p,ann [VoInm(A|S,0)gx(S, A)]

B m(A|S,6)
_ESNPaANﬁ 3(A|S) V@ lnﬂ—(A|Sv e)qﬂ(sv A)

where [ is the behavior policy and p is a state distribution.

See the details and the proof in my book.
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Off-policy actor-critic

m The algorithm of off-policy actor-critic
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The algorithm of off-policy actor-critic

The off-policy policy gradient is also invariant to a baseline b(s).

e In particular, we have

VoJ(0) = Esmp anp {%w In(A|S,0)(g= (S, A) — b(S))}

e To reduce the estimation variance, we can select the baseline as
b(S) = vx(S) and obtain

VoJ(0) =E {%Ve Inm(AlS,0)(gx(S, A) — UW(S)):|
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The algorithm of off-policy actor-critic

The corresponding stochastic gradient-ascent algorithm is

TF((Lt‘St,et)

B(at|st)

Similar to the on-policy case,

9t+1 = 975 + (677} Vg 11171'((115|St, Qt)(qt(st, at) — Ut(St))

Qt(st,at) - Uz(St) R T4l + ’th(St+1) - vt(st) = 5t(8t,at)

Then, the algorithm becomes

’JT'(at|St7 Gt)

Blat|se)

0t+1 = et + ap Ve In ﬂ(at|st, 91)51(St, CLt)

The interpretation can be seen from

5t(8t, at)

m) Vom(ac|st, 0t)

Oi41 = 0: + o (
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The algorithm of off-policy actor-critic

Off-policy actor-critic based on importance sampling

Initialization: A given behavior policy S(als). A target policy m(als,fo) where
0o is the initial parameter. A value function v(s,wp) where wyg is the initial
parameter. au,,ag > 0.

Goal: Learn an optimal policy to maximize J(6).

At time step t in each episode, do

Generate a; following B(st) and then observe 741, S¢41.

Advantage (TD error):

0t = Te41 + YU(St41, we) — v(st, W)
Actor (policy update):
54,0
_ .9t+1 =0+ ae%éng In 7(a¢|st, 0¢)
Critic (value update):

W41 = Wt + o %w&vwv(st, wt)
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B Deterministic actor-critic (DPG)
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Introduction

Up to now, the policies used in the policy gradient methods are all stochastic

since 7(als, @) > 0 for every (s, a).

Can we use deterministic policies in the policy gradient methods?

e Benefit: it can handle continuous action.
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Introduction

The ways to represent a policy:

e Up to now, a general policy is denoted as 7(als, ) € [0, 1], which can be

either stochastic or deterministic.

e Now, the deterministic policy is specifically denoted as
a = pu(s,0) = u(s)

e L is a mapping from S to A.
e 4 can be represented by, for example, a neural network with the input as
s, the output as a, and the parameter as 6.

e We may write u(s, ) in short as u(s).
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B Deterministic actor-critic (DPG)
m The theorem of deterministic policy gradient
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The theorem of deterministic policy gradient

e The policy gradient theorems introduced before are merely valid for

stochastic policies.

e If the policy must be deterministic, we must derive a new policy gradient
theorem.

e The ideas and procedures are similar.
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The theorem of deterministic policy gradient

Consider the metric of average state value in the discounted case:
J(8) = Efvu(s)] = Y _ do(s)v,(s)
SES
where do(s) is a probability distribution satisfying > _¢ do(s) = 1.
e dp is selected to be independent of p. The gradient in this case is easier to
calculate.
e There are two special yet important cases of selecting do.

e The first special case is that do(so) = 1 and do(s # so) = 0, where s is a
specific starting state of interest.

e The second special case is that dy is the stationary distribution of a
behavior policy that is different from the p.
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The theorem of deterministic policy gradient

Theorem (Deterministic policy gradient theorem in the discounted case)

In the discounted case where v € (0,1), the gradient of J(6) is

VG'](H Z P}L VG/J‘ (Vﬂrqlt (S’ a))‘a:u(s)
seES

= ESNp“ [VG,U'(S) (vaq;L(Sv a)) ‘a:u(S)}

Here, p, is a state distribution.
See more details and the proof in my book.

One important difference from the stochastic case:
e The gradient does not involve the distribution of the action A (why?).

e As a result, the deterministic policy gradient method is off-policy.
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B Deterministic actor-critic (DPG)

m The algorithm of deterministic actor-critic
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The algorithm of deterministic actor-critic

Based on the policy gradient, the gradient-ascent algorithm for maximizing
J(0) is:

Orr1 =0t + apEs~p, [VGH(S) (anu(S: a))|azu(5)}
The corresponding stochastic gradient-ascent algorithm is

Or1 = 0 + agVou(se) (Vadu(se, @) la=u(sr)
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The algorithm of deterministic actor-critic

Deterministic policy gradient or deterministic actor-critic

Initialization: A given behavior policy (B(als). A deterministic target policy
1(s,00) where g is the initial parameter. A value function ¢(s,a,wp) where
woq is the initial parameter. aq,,ay > 0.

Goal: Learn an optimal policy to maximize J(0).

At time step t in each episode, do

Generate a; following 8 and then observe r¢41, s¢41.
TD error:

0t = i1 + vq(se+1, u(st41,0t),we) — q(st, at, wt)
Actor (policy update):

0141 = 0t + agVou(se, 0:) (Vaq(st, a,we))la=p(se)
Critic (value update):

W41 = Wi + @wdt Vwq(st, ar, wi)
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The algorithm of deterministic actor-critic

Remarks:

e This is an off-policy implementation where the behavior policy 8 may be
different from p.

e [ can also be replaced by p+noise.

e How to select the function to represent g(s, a,w)?

e Linear function: q(s,a,w) = ¢% (s, a)w where ¢(s,a) is the feature vector.
Details can be found in the DPG paper.
e Neural networks: deep deterministic policy gradient (DDPG) method.
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The simplest actor-critic

Advantage actor-critic

Off-policy actor-critic

e Deterministic actor-critic
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This is the end of the course, but a start for your journey
in the field of reinforcement learning!
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