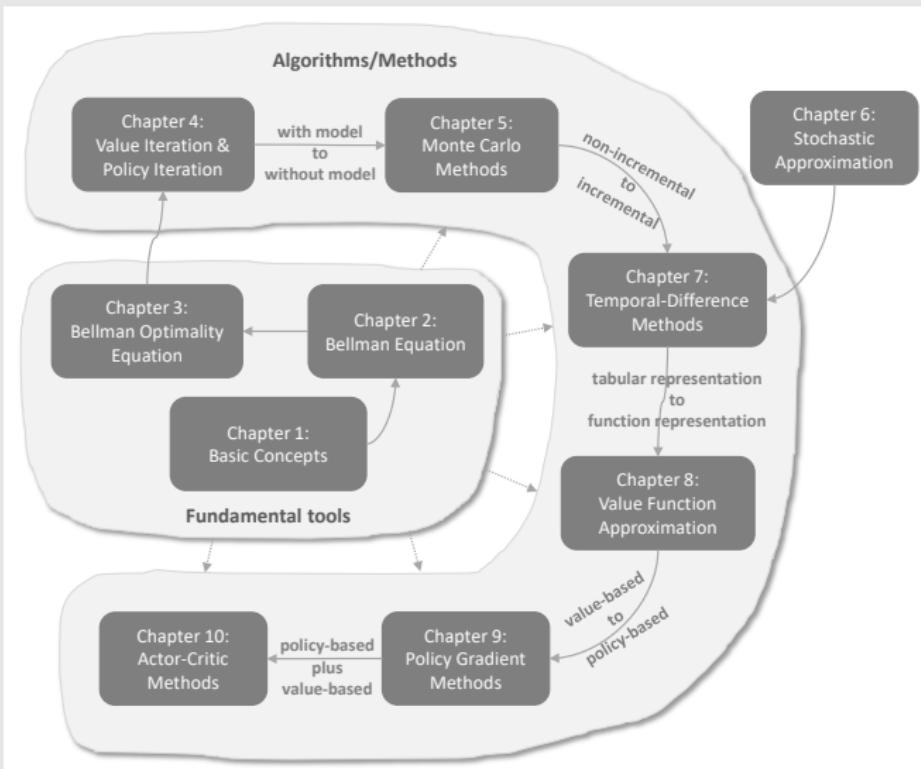


## Lecture 10: Actor-Critic Methods

Shiyu Zhao

# Outline



## **Actor-critic methods are still policy gradient methods.**

- They emphasize the structure that incorporates the policy gradient and value-based methods.

## **What are “actor” and “critic”?**

- Here, “actor” refers to **policy update**. It is called *actor* is because the policies will be applied to take actions.
- Here, “critic” refers to **policy evaluation** or **value estimation**. It is called *critic* because it criticizes the policy by evaluating it.

# Outline

- 1 The simplest actor-critic (QAC)**
- 2 Advantage actor-critic (A2C)**
  - Baseline invariance
  - The algorithm of advantage actor-critic
- 3 Off-policy actor-critic**
  - Illustrative examples
  - Importance sampling
  - The theorem of off-policy policy gradient
  - The algorithm of off-policy actor-critic
- 4 Deterministic actor-critic (DPG)**
  - The theorem of deterministic policy gradient
  - The algorithm of deterministic actor-critic

# Outline

- 1 The simplest actor-critic (QAC)**
- 2 Advantage actor-critic (A2C)**
  - Baseline invariance
  - The algorithm of advantage actor-critic
- 3 Off-policy actor-critic**
  - Illustrative examples
  - Importance sampling
  - The theorem of off-policy policy gradient
  - The algorithm of off-policy actor-critic
- 4 Deterministic actor-critic (DPG)**
  - The theorem of deterministic policy gradient
  - The algorithm of deterministic actor-critic

## The simplest actor-critic

Revisit the idea of policy gradient introduced in the last lecture.

- 1) A scalar metric  $J(\theta)$ , which can be  $\bar{v}_\pi$  or  $\bar{r}_\pi$ .
- 2) The gradient-ascent algorithm maximizing  $J(\theta)$  is

$$\begin{aligned}\theta_{t+1} &= \theta_t + \alpha \nabla_\theta J(\theta_t) \\ &= \theta_t + \alpha \mathbb{E}_{S \sim \eta, A \sim \pi} \left[ \nabla_\theta \ln \pi(A|S, \theta_t) q_\pi(S, A) \right]\end{aligned}$$

- 3) The stochastic gradient-ascent algorithm is

$$\theta_{t+1} = \theta_t + \alpha \nabla_\theta \ln \pi(a_t|s_t, \theta_t) q_t(s_t, a_t)$$

This expression is very important! We can directly see “actor” and “critic” from it:

- This expression corresponds to actor!
- The algorithm estimating  $q_t(s, a)$  corresponds to critic!

# The simplest actor-critic

How to get  $q_t(s_t, a_t)$ ?

So far, we have studied **two ways** to estimate action values:

- **Monte Carlo learning:** If MC is used, the corresponding algorithm is called **REINFORCE** or **Monte Carlo policy gradient**.
  - We introduced in the last lecture.
- **Temporal-difference learning:** If TD is used, such kind of algorithms are usually called **actor-critic**.
  - We will introduce in this lecture.

## The simplest actor-critic algorithm (QAC)

**Initialization:** A policy function  $\pi(a|s, \theta_0)$  where  $\theta_0$  is the initial parameter.

A value function  $q(s, a, w_0)$  where  $w_0$  is the initial parameter.  $\alpha_w, \alpha_\theta > 0$ .

**Goal:** Learn an optimal policy to maximize  $J(\theta)$ .

At time step  $t$  in each episode, do

Generate  $a_t$  following  $\pi(a|s_t, \theta_t)$ , observe  $r_{t+1}, s_{t+1}$ , and then generate  $a_{t+1}$  following  $\pi(a|s_{t+1}, \theta_t)$ .

**Actor (policy update):**

$$\theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \ln \pi(a_t|s_t, \theta_t) q(s_t, a_t, w_t)$$

**Critic (value update):**

$$w_{t+1} = w_t + \alpha_w [r_{t+1} + \gamma q(s_{t+1}, a_{t+1}, w_t) - q(s_t, a_t, w_t)] \nabla_w q(s_t, a_t, w_t)$$

## The simplest actor-critic

Remarks:

- The *critic* corresponds to “SARSA+value function approximation”.
- The *actor* corresponds to the policy update algorithm.
- This particular actor-critic algorithm is sometimes referred to as [Q Actor-Critic](#) (QAC).
- Though simple, this algorithm reveals the core idea of actor-critic methods.  
It can be extended to generate many other algorithms as shown later.

# Outline

- 1 The simplest actor-critic (QAC)**
- 2 Advantage actor-critic (A2C)**
  - Baseline invariance
  - The algorithm of advantage actor-critic
- 3 Off-policy actor-critic**
  - Illustrative examples
  - Importance sampling
  - The theorem of off-policy policy gradient
  - The algorithm of off-policy actor-critic
- 4 Deterministic actor-critic (DPG)**
  - The theorem of deterministic policy gradient
  - The algorithm of deterministic actor-critic

# Introduction

Next, we extend QAC to advantage actor-critic (A2C)

- The core idea is to introduce a baseline to reduce variance.

# Outline

- 1 The simplest actor-critic (QAC)
- 2 Advantage actor-critic (A2C)
  - Baseline invariance
  - The algorithm of advantage actor-critic
- 3 Off-policy actor-critic
  - Illustrative examples
  - Importance sampling
  - The theorem of off-policy policy gradient
  - The algorithm of off-policy actor-critic
- 4 Deterministic actor-critic (DPG)
  - The theorem of deterministic policy gradient
  - The algorithm of deterministic actor-critic

## Baseline invariance

Property: the policy gradient is invariant to an additional baseline:

$$\begin{aligned}\nabla_{\theta} J(\theta) &= \mathbb{E}_{S \sim \eta, A \sim \pi} \left[ \nabla_{\theta} \ln \pi(A|S, \theta_t) q_{\pi}(S, A) \right] \\ &= \mathbb{E}_{S \sim \eta, A \sim \pi} \left[ \nabla_{\theta} \ln \pi(A|S, \theta_t) (q_{\pi}(S, A) - b(S)) \right]\end{aligned}$$

Here, the additional baseline  $b(S)$  is a scalar function of  $S$ .

Next, we answer two questions:

- Why is it valid?
- Why is it useful?

# Baseline invariance

**First, why is it valid?**

That is because

$$\mathbb{E}_{S \sim \eta, A \sim \pi} \left[ \nabla_{\theta} \ln \pi(A|S, \theta_t) b(S) \right] = 0$$

The details:

$$\begin{aligned} \mathbb{E}_{S \sim \eta, A \sim \pi} \left[ \nabla_{\theta} \ln \pi(A|S, \theta_t) b(S) \right] &= \sum_{s \in \mathcal{S}} \eta(s) \sum_{a \in \mathcal{A}} \pi(a|s, \theta_t) \nabla_{\theta} \ln \pi(a|s, \theta_t) b(s) \\ &= \sum_{s \in \mathcal{S}} \eta(s) \sum_{a \in \mathcal{A}} \nabla_{\theta} \pi(a|s, \theta_t) b(s) \\ &= \sum_{s \in \mathcal{S}} \eta(s) b(s) \sum_{a \in \mathcal{A}} \nabla_{\theta} \pi(a|s, \theta_t) \\ &= \sum_{s \in \mathcal{S}} \eta(s) b(s) \nabla_{\theta} \sum_{a \in \mathcal{A}} \pi(a|s, \theta_t) \\ &= \sum_{s \in \mathcal{S}} \eta(s) b(s) \nabla_{\theta} 1 = 0 \end{aligned}$$

## Baseline invariance

### Second, why is the baseline useful?

The gradient is  $\nabla_{\theta} J(\theta) = \mathbb{E}[X]$  where

$$X(S, A) \doteq \nabla_{\theta} \ln \pi(A|S, \theta_t) [q_{\pi}(S, A) - b(S)]$$

We have

- $\mathbb{E}[X]$  is invariant to  $b(S)$ .
- $\text{var}(X)$  is NOT invariant to  $b(S)$ .
  - Why? Because  $\text{tr}[\text{var}(X)] = \mathbb{E}[X^T X] - \bar{x}^T \bar{x}$  and

$$\begin{aligned}\mathbb{E}[X^T X] &= \mathbb{E} \left[ (\nabla_{\theta} \ln \pi)^T (\nabla_{\theta} \ln \pi) (q_{\pi}(S, A) - b(S))^2 \right] \\ &= \mathbb{E} \left[ \|\nabla_{\theta} \ln \pi\|^2 (q_{\pi}(S, A) - b(S))^2 \right]\end{aligned}$$

See the proof in my book.

## Baseline invariance

**Our goal:** Select an **optimal baseline**  $b$  to minimize  $\text{var}(X)$

- **Benefit:** when we use a random sample to approximate  $\mathbb{E}[X]$ , the estimation variance would also be small.

In the algorithms of REINFORCE and QAC,

- There is no baseline.
- Or,  $b = 0$ , **which is not guaranteed to be a good baseline.**

## Baseline invariance

- The **optimal baseline** that can minimize  $\text{var}(X)$  is, for any  $s \in \mathcal{S}$ ,

$$b^*(s) = \frac{\mathbb{E}_{A \sim \pi} [\|\nabla_{\theta} \ln \pi(A|s, \theta_t)\|^2 q_{\pi}(s, A)]}{\mathbb{E}_{A \sim \pi} [\|\nabla_{\theta} \ln \pi(A|s, \theta_t)\|^2]}.$$

See the proof in my book.

- Although this baseline is optimal, it is complex.
- We can remove the weight  $\|\nabla_{\theta} \ln \pi(A|s, \theta_t)\|^2$  and select the suboptimal baseline:

$$b(s) = \mathbb{E}_{A \sim \pi} [q_{\pi}(s, A)] = v_{\pi}(s)$$

which is the state value of  $s$ !

# Outline

- 1 The simplest actor-critic (QAC)
- 2 Advantage actor-critic (A2C)
  - Baseline invariance
  - The algorithm of advantage actor-critic
- 3 Off-policy actor-critic
  - Illustrative examples
  - Importance sampling
  - The theorem of off-policy policy gradient
  - The algorithm of off-policy actor-critic
- 4 Deterministic actor-critic (DPG)
  - The theorem of deterministic policy gradient
  - The algorithm of deterministic actor-critic

## The algorithm of advantage actor-critic

When  $b(s) = v_\pi(s)$ :

- The gradient-ascent algorithm is

$$\begin{aligned}\theta_{t+1} &= \theta_t + \alpha \mathbb{E} \left[ \nabla_\theta \ln \pi(A|S, \theta_t) [q_\pi(S, A) - v_\pi(S)] \right] \\ &\doteq \theta_t + \alpha \mathbb{E} \left[ \nabla_\theta \ln \pi(A|S, \theta_t) \delta_\pi(S, A) \right]\end{aligned}$$

where

$$\delta_\pi(S, A) \doteq q_\pi(S, A) - v_\pi(S)$$

is called the **advantage function** (why called advantage?).

- The stochastic version is

$$\begin{aligned}\theta_{t+1} &= \theta_t + \alpha \nabla_\theta \ln \pi(a_t|s_t, \theta_t) [q_t(s_t, a_t) - v_t(s_t)] \\ &= \theta_t + \alpha \nabla_\theta \ln \pi(a_t|s_t, \theta_t) \delta_t(s_t, a_t)\end{aligned}$$

## The algorithm of advantage actor-critic

Furthermore, the advantage function is approximated by the TD error:

$$\delta_t = q_t(s_t, a_t) - v_t(s_t) \rightarrow r_{t+1} + \gamma v_t(s_{t+1}) - v_t(s_t)$$

- This approximation is reasonable because

$$\mathbb{E}[q_\pi(S, A) - v_\pi(S)|S = s_t, A = a_t] = \mathbb{E}[R + \gamma v_\pi(S') - v_\pi(S)|S = s_t, A = a_t]$$

- **Benefit:** only need one network to approximate  $v_\pi(s)$  rather than two networks for  $q_\pi(s, a)$  and  $v_\pi(s)$ .

# The algorithm of advantage actor-critic

## Interpretation of the A2C algorithm:

$$\begin{aligned}\theta_{t+1} &= \theta_t + \alpha \nabla_{\theta} \ln \pi(a_t | s_t, \theta_t) \delta_t(s_t, a_t) \\ &= \theta_t + \alpha \frac{\nabla_{\theta} \pi(a_t | s_t, \theta_t)}{\pi(a_t | s_t, \theta_t)} \delta_t(s_t, a_t) \\ &= \theta_t + \alpha \underbrace{\left( \frac{\delta_t(s_t, a_t)}{\pi(a_t | s_t, \theta_t)} \right)}_{\beta_t} \nabla_{\theta} \pi(a_t | s_t, \theta_t)\end{aligned}$$

Then,

greater  $\delta_t(s_t, a_t) \implies$  greater  $\beta_t \implies$  greater  $\pi(a_t | s_t, \theta_{t+1})$

smaller  $\pi(a_t | s_t, \theta_t) \implies$  greater  $\beta_t \implies$  greater  $\pi(a_t | s_t, \theta_{t+1})$

See the analysis of a similar case in the last lecture.

- It can well balance exploration and exploitation.
- What matters is the relative value  $\delta_t$  rather than the absolute value  $q_t$ , which is more reasonable.

## Advantage actor-critic (A2C) or TD actor-critic

**Initialization:** A policy function  $\pi(a|s, \theta_0)$  where  $\theta_0$  is the initial parameter. A value function  $v(s, w_0)$  where  $w_0$  is the initial parameter.  $\alpha_w, \alpha_\theta > 0$ .

**Goal:** Learn an optimal policy to maximize  $J(\theta)$ .

At time step  $t$  in each episode, do

Generate  $a_t$  following  $\pi(a|s_t, \theta_t)$  and then observe  $r_{t+1}, s_{t+1}$ .

**Advantage (TD error):**

$$\delta_t = r_{t+1} + \gamma v(s_{t+1}, w_t) - v(s_t, w_t)$$

**Actor (policy update):**

$$\theta_{t+1} = \theta_t + \alpha_\theta \delta_t \nabla_\theta \ln \pi(a_t|s_t, \theta_t)$$

**Critic (value update):**

$$w_{t+1} = w_t + \alpha_w \delta_t \nabla_w v(s_t, w_t)$$

It is on-policy.

Since the policy  $\pi(\theta_t)$  is stochastic, no need to use techniques like  $\varepsilon$ -greedy.

# Outline

- 1** The simplest actor-critic (QAC)
- 2** Advantage actor-critic (A2C)
  - Baseline invariance
  - The algorithm of advantage actor-critic
- 3** Off-policy actor-critic
  - Illustrative examples
  - Importance sampling
  - The theorem of off-policy policy gradient
  - The algorithm of off-policy actor-critic
- 4** Deterministic actor-critic (DPG)
  - The theorem of deterministic policy gradient
  - The algorithm of deterministic actor-critic

# Introduction

- Policy gradient is on-policy.
  - Why? because the gradient is  $\nabla_{\theta} J(\theta) = \mathbb{E}_{S \sim \eta, A \sim \pi} [ * ]$
- Can we convert it to off-policy?
  - Yes, by **importance sampling**
  - The importance sampling technique is not limited to AC, but also to any algorithm that aims to estimate an expectation.

# Outline

- 1 The simplest actor-critic (QAC)
- 2 Advantage actor-critic (A2C)
  - Baseline invariance
  - The algorithm of advantage actor-critic
- 3 Off-policy actor-critic
  - Illustrative examples
  - Importance sampling
  - The theorem of off-policy policy gradient
  - The algorithm of off-policy actor-critic
- 4 Deterministic actor-critic (DPG)
  - The theorem of deterministic policy gradient
  - The algorithm of deterministic actor-critic

## Illustrative examples

Consider a random variable  $X \in \mathcal{X} = \{+1, -1\}$ .

If the probability distribution of  $X$  is  $p_0$ :

$$p_0(X = +1) = 0.5, \quad p_0(X = -1) = 0.5$$

then the expectation of  $X$  is

$$\mathbb{E}_{X \sim p_0}[X] = (+1) \cdot 0.5 + (-1) \cdot 0.5 = 0.$$

**Question: how to estimate  $\mathbb{E}[X]$  by using some samples  $\{x_i\}$ ?**

## Illustrative examples

### Case 1 (we are already familiar):

- The samples  $\{x_i\}$  are generated according to  $p_0$ :

$$\mathbb{E}[x_i] = \mathbb{E}[X], \quad \text{var}[x_i] = \text{var}[X]$$

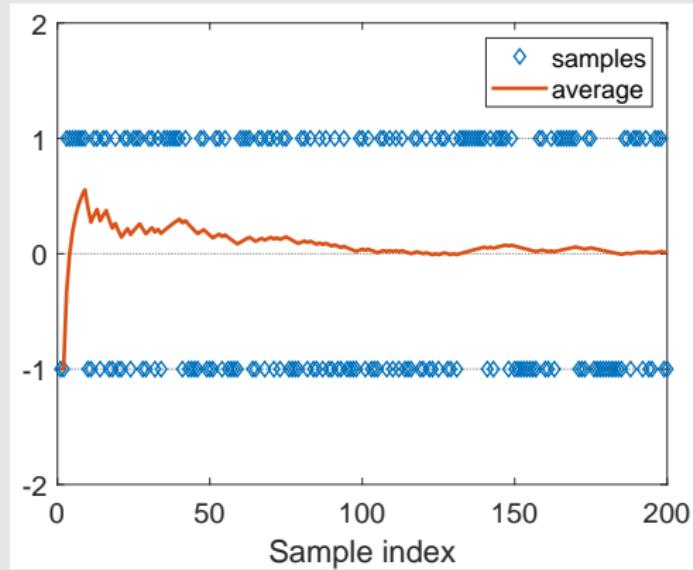
Then, the average value can converge to the expectation:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i \rightarrow \mathbb{E}[X], \quad \text{as } n \rightarrow \infty$$

See the law of large numbers.

## Illustrative examples

Figure: Samples and  $\bar{x} \rightarrow \mathbb{E}[X]$



## Illustrative examples

### Case 2 (a new case that we want to study):

- The samples  $\{x_i\}$  are generated according to another distribution  $p_1$ :

$$p_1(X = +1) = 0.8, \quad p_1(X = -1) = 0.2$$

The expectation is

$$\mathbb{E}_{X \sim p_1}[X] = (+1) \cdot 0.8 + (-1) \cdot 0.2 = 0.6$$

If we use the average of the samples, then without suprising

$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i \rightarrow \mathbb{E}_{X \sim p_1}[X] = 0.6 \neq \mathbb{E}_{X \sim p_0}[X] = 0$$

## Illustrative examples

**Question: Can we use  $\{x_i\} \sim p_1$  to estimate  $\mathbb{E}_{X \sim p_0}[X]$ ?**

- **Why to do that?**

We may want to estimate  $\mathbb{E}_{A \sim \pi}[\cdot]$  where  $\pi$  is the *target policy* based on the samples of a *behavior policy*  $\beta$ .

- **How to do that?**

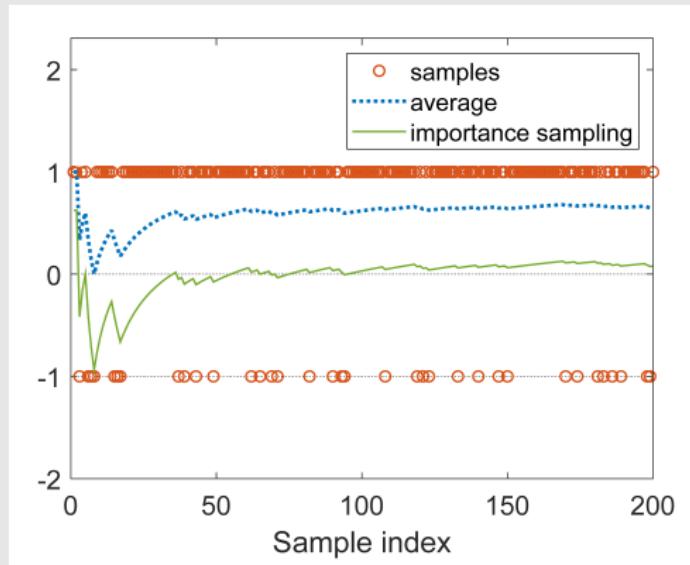
- We can't achieve that if directly using  $\bar{x}$ :

$$\bar{x} \rightarrow \mathbb{E}_{X \sim p_1}[X] = 0.6 \neq \mathbb{E}_{X \sim p_0}[X] = 0$$

- We can achieve that by using the importance sampling technique.

## Illustrative examples

Figure: Samples and  $\bar{x} \rightarrow \mathbb{E}_{X \sim p_1}[X]$  (the dotted line)



# Outline

- 1 The simplest actor-critic (QAC)
- 2 Advantage actor-critic (A2C)
  - Baseline invariance
  - The algorithm of advantage actor-critic
- 3 Off-policy actor-critic
  - Illustrative examples
  - **Importance sampling**
  - The theorem of off-policy policy gradient
  - The algorithm of off-policy actor-critic
- 4 Deterministic actor-critic (DPG)
  - The theorem of deterministic policy gradient
  - The algorithm of deterministic actor-critic

# Importance sampling

Note that

$$\mathbb{E}_{X \sim p_0}[X] = \sum_x p_0(x)x = \sum_x p_1(x) \underbrace{\frac{p_0(x)}{p_1(x)}x}_{f(x)} = \mathbb{E}_{X \sim p_1}[f(X)]$$

- Thus, we can estimate  $\mathbb{E}_{X \sim p_0}[X]$  by estimating  $\mathbb{E}_{X \sim p_1}[f(X)]$ .
- How to estimate  $\mathbb{E}_{X \sim p_1}[f(X)]$ ? Easy. Let

$$\bar{f} \doteq \frac{1}{n} \sum_{i=1}^n f(x_i), \quad \text{where } x_i \sim p_1$$

Then,

$$\bar{f} \rightarrow \mathbb{E}_{X \sim p_1}[f(X)], \quad \text{as } n \rightarrow \infty$$

## Importance sampling

Therefore,  $\bar{f}$  is a good approximation for  $\mathbb{E}_{X \sim p_1}[f(X)] = \mathbb{E}_{X \sim p_0}[X]$

$$\mathbb{E}_{X \sim p_0}[X] \approx \bar{f} = \frac{1}{n} \sum_{i=1}^n f(x_i) = \frac{1}{n} \sum_{i=1}^n \frac{p_0(x_i)}{p_1(x_i)} x_i$$

- $\frac{p_0(x_i)}{p_1(x_i)}$  is called the *importance weight*.
  - If  $p_1(x_i) = p_0(x_i)$ , the importance weight is one and  $\bar{f}$  becomes  $\bar{x}$ .
  - If  $p_0(x_i) \geq p_1(x_i)$ ,  $x_i$  can be more often sampled by  $p_0$  than  $p_1$ . The importance weight ( $> 1$ ) can emphasize the importance of this sample.

## Importance sampling

**You may ask:** While  $\bar{f} = \frac{1}{n} \sum_{i=1}^n \frac{p_0(x_i)}{p_1(x_i)} x_i$  requires  $p_0(x)$ , if I know  $p_0(x)$ , why not directly calculate the expectation?

**Answer:** We may only be able to obtain  $p_0(x)$  of a given  $x$ , but not all  $x$ .

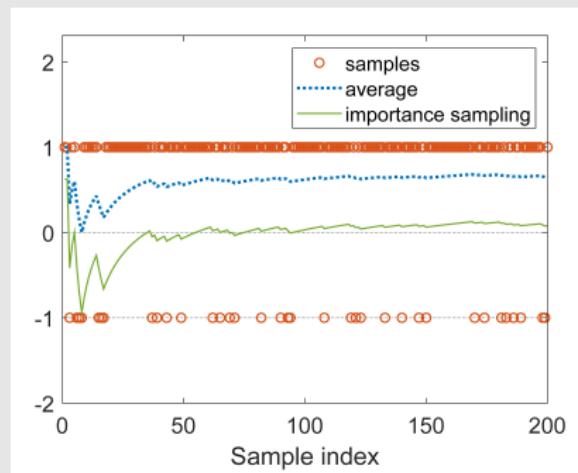
- For example, continuous case, complex expression of  $p_0$ , or no expression of  $p_0$  (e.g.,  $p_0$  represented by a neural network).

# Importance sampling

**Summary:** if  $\{x_i\} \sim p_1$ ,

$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i \rightarrow \mathbb{E}_{X \sim p_1}[X]$$

$$\bar{f} = \frac{1}{n} \sum_{i=1}^n \frac{p_0(x_i)}{p_1(x_i)} x_i \rightarrow \mathbb{E}_{X \sim p_0}[X]$$



# Outline

- 1 The simplest actor-critic (QAC)
- 2 Advantage actor-critic (A2C)
  - Baseline invariance
  - The algorithm of advantage actor-critic
- 3 Off-policy actor-critic
  - Illustrative examples
  - Importance sampling
  - **The theorem of off-policy policy gradient**
  - The algorithm of off-policy actor-critic
- 4 Deterministic actor-critic (DPG)
  - The theorem of deterministic policy gradient
  - The algorithm of deterministic actor-critic

## The theorem of off-policy policy gradient

Like the previous on-policy case, we need to derive the policy gradient in the off-policy case.

- Suppose  $\beta$  is the behavior policy that generates experience samples.
- Our goal is to use these samples to update the target policy  $\pi(\theta)$  that can optimize the metric

$$J(\theta) = \sum_{s \in \mathcal{S}} d_\beta(s) v_\pi(s) = \mathbb{E}_{S \sim d_\beta} [v_\pi(S)]$$

where  $d_\beta$  is the stationary distribution under policy  $\beta$ .

# The theorem of off-policy policy gradient

## Theorem (Off-policy policy gradient theorem)

*In the discounted case where  $\gamma \in (0, 1)$ , the gradient of  $J(\theta)$  is*

$$\begin{aligned}\nabla_{\theta} J(\theta) &= \mathbb{E}_{S \sim \rho, A \sim \pi} [\nabla_{\theta} \ln \pi(A|S, \theta) q_{\pi}(S, A)] \\ &= \mathbb{E}_{S \sim \rho, A \sim \beta} \left[ \frac{\pi(A|S, \theta)}{\beta(A|S)} \nabla_{\theta} \ln \pi(A|S, \theta) q_{\pi}(S, A) \right]\end{aligned}$$

*where  $\beta$  is the behavior policy and  $\rho$  is a state distribution.*

See the details and the proof in my book.

# Outline

- 1 The simplest actor-critic (QAC)**
- 2 Advantage actor-critic (A2C)**
  - Baseline invariance
  - The algorithm of advantage actor-critic
- 3 Off-policy actor-critic**
  - Illustrative examples
  - Importance sampling
  - The theorem of off-policy policy gradient
  - The algorithm of off-policy actor-critic
- 4 Deterministic actor-critic (DPG)**
  - The theorem of deterministic policy gradient
  - The algorithm of deterministic actor-critic

## The algorithm of off-policy actor-critic

The off-policy policy gradient is also **invariant to a baseline  $b(s)$** .

- In particular, we have

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{S \sim \rho, A \sim \beta} \left[ \frac{\pi(A|S, \theta)}{\beta(A|S)} \nabla_{\theta} \ln \pi(A|S, \theta) (q_{\pi}(S, A) - b(S)) \right]$$

- To reduce the estimation variance, we can select the baseline as

$b(S) = v_{\pi}(S)$  and obtain

$$\nabla_{\theta} J(\theta) = \mathbb{E} \left[ \frac{\pi(A|S, \theta)}{\beta(A|S)} \nabla_{\theta} \ln \pi(A|S, \theta) (q_{\pi}(S, A) - v_{\pi}(S)) \right]$$

## The algorithm of off-policy actor-critic

The corresponding stochastic gradient-ascent algorithm is

$$\theta_{t+1} = \theta_t + \alpha_\theta \frac{\pi(a_t|s_t, \theta_t)}{\beta(a_t|s_t)} \nabla_\theta \ln \pi(a_t|s_t, \theta_t) (q_t(s_t, a_t) - v_t(s_t))$$

Similar to the on-policy case,

$$q_t(s_t, a_t) - v_t(s_t) \approx r_{t+1} + \gamma v_t(s_{t+1}) - v_t(s_t) \doteq \delta_t(s_t, a_t)$$

Then, the algorithm becomes

$$\theta_{t+1} = \theta_t + \alpha_\theta \frac{\pi(a_t|s_t, \theta_t)}{\beta(a_t|s_t)} \nabla_\theta \ln \pi(a_t|s_t, \theta_t) \delta_t(s_t, a_t)$$

The interpretation can be seen from

$$\theta_{t+1} = \theta_t + \alpha_\theta \left( \frac{\delta_t(s_t, a_t)}{\beta(a_t|s_t)} \right) \nabla_\theta \pi(a_t|s_t, \theta_t)$$

# The algorithm of off-policy actor-critic

## Off-policy actor-critic based on importance sampling

**Initialization:** A given behavior policy  $\beta(a|s)$ . A target policy  $\pi(a|s, \theta_0)$  where  $\theta_0$  is the initial parameter. A value function  $v(s, w_0)$  where  $w_0$  is the initial parameter.  $\alpha_w, \alpha_\theta > 0$ .

**Goal:** Learn an optimal policy to maximize  $J(\theta)$ .

At time step  $t$  in each episode, do

Generate  $a_t$  following  $\beta(s_t)$  and then observe  $r_{t+1}, s_{t+1}$ .

**Advantage (TD error):**

$$\delta_t = r_{t+1} + \gamma v(s_{t+1}, w_t) - v(s_t, w_t)$$

**Actor (policy update):**

$$\theta_{t+1} = \theta_t + \alpha_\theta \frac{\pi(a_t|s_t, \theta_t)}{\beta(a_t|s_t)} \delta_t \nabla_\theta \ln \pi(a_t|s_t, \theta_t)$$

**Critic (value update):**

$$w_{t+1} = w_t + \alpha_w \frac{\pi(a_t|s_t, \theta_t)}{\beta(a_t|s_t)} \delta_t \nabla_w v(s_t, w_t)$$

# Outline

- 1 The simplest actor-critic (QAC)**
- 2 Advantage actor-critic (A2C)**
  - Baseline invariance
  - The algorithm of advantage actor-critic
- 3 Off-policy actor-critic**
  - Illustrative examples
  - Importance sampling
  - The theorem of off-policy policy gradient
  - The algorithm of off-policy actor-critic
- 4 Deterministic actor-critic (DPG)**
  - The theorem of deterministic policy gradient
  - The algorithm of deterministic actor-critic

## Introduction

Up to now, the policies used in the policy gradient methods are all **stochastic** since  $\pi(a|s, \theta) > 0$  for every  $(s, a)$ .

Can we use **deterministic policies** in the policy gradient methods?

- Benefit: it can handle continuous action.

# Introduction

The ways to represent a policy:

- Up to now, a general policy is denoted as  $\pi(a|s, \theta) \in [0, 1]$ , which can be either stochastic or deterministic.
- Now, the deterministic policy is specifically denoted as

$$a = \mu(s, \theta) \doteq \mu(s)$$

- $\mu$  is a mapping from  $\mathcal{S}$  to  $\mathcal{A}$ .
- $\mu$  can be represented by, for example, a neural network with the input as  $s$ , the output as  $a$ , and the parameter as  $\theta$ .
- We may write  $\mu(s, \theta)$  in short as  $\mu(s)$ .

# Outline

- 1 The simplest actor-critic (QAC)**
- 2 Advantage actor-critic (A2C)**
  - Baseline invariance
  - The algorithm of advantage actor-critic
- 3 Off-policy actor-critic**
  - Illustrative examples
  - Importance sampling
  - The theorem of off-policy policy gradient
  - The algorithm of off-policy actor-critic
- 4 Deterministic actor-critic (DPG)**
  - The theorem of deterministic policy gradient
  - The algorithm of deterministic actor-critic

## The theorem of deterministic policy gradient

- The policy gradient theorems introduced before are merely valid for stochastic policies.
- If the policy must be deterministic, we must derive a new policy gradient theorem.
- The ideas and procedures are similar.

## The theorem of deterministic policy gradient

Consider the metric of average state value in the discounted case:

$$J(\theta) = \mathbb{E}[v_\mu(s)] = \sum_{s \in \mathcal{S}} d_0(s)v_\mu(s)$$

where  $d_0(s)$  is a probability distribution satisfying  $\sum_{s \in \mathcal{S}} d_0(s) = 1$ .

- $d_0$  is selected to be **independent** of  $\mu$ . The gradient in this case is easier to calculate.
- There are two special yet important cases of selecting  $d_0$ .
  - The first special case is that  $d_0(s_0) = 1$  and  $d_0(s \neq s_0) = 0$ , where  $s_0$  is a specific starting state of interest.
  - The second special case is that  $d_0$  is the stationary distribution of a behavior policy that is different from the  $\mu$ .

# The theorem of deterministic policy gradient

Theorem (Deterministic policy gradient theorem in the discounted case)

*In the discounted case where  $\gamma \in (0, 1)$ , the gradient of  $J(\theta)$  is*

$$\begin{aligned}\nabla_{\theta} J(\theta) &= \sum_{s \in \mathcal{S}} \rho_{\mu}(s) \nabla_{\theta} \mu(s) (\nabla_a q_{\mu}(s, a))|_{a=\mu(s)} \\ &= \mathbb{E}_{S \sim \rho_{\mu}} [\nabla_{\theta} \mu(S) (\nabla_a q_{\mu}(S, a))|_{a=\mu(S)}]\end{aligned}$$

*Here,  $\rho_{\mu}$  is a state distribution.*

*See more details and the proof in my book.*

**One important difference from the stochastic case:**

- The gradient does not involve the distribution of the action  $A$  (why?).
- As a result, the deterministic policy gradient method is **off-policy**.

# Outline

- 1 The simplest actor-critic (QAC)**
- 2 Advantage actor-critic (A2C)**
  - Baseline invariance
  - The algorithm of advantage actor-critic
- 3 Off-policy actor-critic**
  - Illustrative examples
  - Importance sampling
  - The theorem of off-policy policy gradient
  - The algorithm of off-policy actor-critic
- 4 Deterministic actor-critic (DPG)**
  - The theorem of deterministic policy gradient
  - The algorithm of deterministic actor-critic

## The algorithm of deterministic actor-critic

Based on the policy gradient, the gradient-ascent algorithm for maximizing  $J(\theta)$  is:

$$\theta_{t+1} = \theta_t + \alpha_\theta \mathbb{E}_{S \sim \rho_\mu} [\nabla_\theta \mu(S) (\nabla_a q_\mu(S, a))|_{a=\mu(S)}]$$

The corresponding stochastic gradient-ascent algorithm is

$$\theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \mu(s_t) (\nabla_a q_\mu(s_t, a))|_{a=\mu(s_t)}$$

# The algorithm of deterministic actor-critic

## Deterministic policy gradient or deterministic actor-critic

**Initialization:** A given behavior policy  $\beta(a|s)$ . A deterministic target policy  $\mu(s, \theta_0)$  where  $\theta_0$  is the initial parameter. A value function  $q(s, a, w_0)$  where  $w_0$  is the initial parameter.  $\alpha_w, \alpha_\theta > 0$ .

**Goal:** Learn an optimal policy to maximize  $J(\theta)$ .

At time step  $t$  in each episode, do

Generate  $a_t$  following  $\beta$  and then observe  $r_{t+1}, s_{t+1}$ .

**TD error:**

$$\delta_t = r_{t+1} + \gamma q(s_{t+1}, \mu(s_{t+1}, \theta_t), w_t) - q(s_t, a_t, w_t)$$

**Actor (policy update):**

$$\theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \mu(s_t, \theta_t) (\nabla_a q(s_t, a, w_t))|_{a=\mu(s_t)}$$

**Critic (value update):**

$$w_{t+1} = w_t + \alpha_w \delta_t \nabla_w q(s_t, a_t, w_t)$$

## The algorithm of deterministic actor-critic

Remarks:

- This is an off-policy implementation where the behavior policy  $\beta$  may be different from  $\mu$ .
- $\beta$  can also be replaced by  $\mu + \text{noise}$ .
- How to select the function to represent  $q(s, a, w)$ ?
  - **Linear function:**  $q(s, a, w) = \phi^T(s, a)w$  where  $\phi(s, a)$  is the feature vector.  
Details can be found in the DPG paper.
  - **Neural networks:** deep deterministic policy gradient (DDPG) method.

# Summary

- The simplest actor-critic
- Advantage actor-critic
- Off-policy actor-critic
- Deterministic actor-critic

The end

This is the end of the course, but a start for your journey  
in the field of reinforcement learning!