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1. The Construction of LP
for MDP
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问题背景

折扣马尔可夫决策过程 (Discounted MDP)
考虑由五元组M = (S,A,P, σ, γ) 描述的折扣 MDP：
• S: 状态空间
• A: 动作空间
• P: 转移概率
• σ: 奖励函数
• γ ∈ (0, 1): 折扣因子

目标

根据动态规划理论，向量 v∗ 是 MDP 的最优价值函数，当且仅当它满足 Bellman 方程
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Bellman 方程

Bellman 方程的形式

v∗(i) = max
a∈A

γ
∑
j∈S

Pa(i, j)v∗(j) +
∑
j∈S

Pa(i, j)rija

 , i ∈ S (1)

关键性质

• 当 γ ∈ (0, 1) 时，Bellman 方程有唯一的不动点解 v∗，它等于 MDP 的最优价值函
数

• 策略 π∗ 是 MDP 的最优策略，当且仅当它在 Bellman 方程中达到最小化
• 这是一个非线性的不动点方程系统
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从 Bellman 方程到线性规划
关键观察

Bellman 方程等价于以下 |S| × (|S||A|) 的线性规划问题：

原问题 (Primal LP)
minimize ξTv

subject to (I− γPa)v− ra ≥ 0, a ∈ A
(2)

其中：

• ξ 是具有正元素的任意向量

• Pa ∈ R|S|×|S| 是转移矩阵，(i, j) 元素等于 Pa(i, j)
• I 是 |S| × |S| 的单位矩阵
• ra(i) =

∑
j∈S Pa(i, j)rija, i ∈ S 是动作 a 下的期望状态转移奖励
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对偶线性规划

对偶问题 (Dual LP)
原问题 (2) 的对偶线性规划为：

maximize
∑
a∈A

λT
a ra

subject to
∑
a∈A

(I− γPT
a )λa = ξ, λa ≥ 0, a ∈ A

(3)
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价值-策略对偶性

定理 (Value-Policy Duality for Discounted MDP)
假设折扣奖励无限时域 MDP 元组M = (S,A,P, r, γ) 有唯一的最优策略 π∗。则
(v∗, λ∗) 是原问题和对偶问题 (2), (3) 的唯一解对，当且仅当

v∗ = (I− γPπ∗)−1rπ∗ ,
(
λ∗
π∗(i),i

)
i∈S

= (I− γ(Pπ∗)T)−1ξ, λ∗
a,i = 0 if a 6= π∗(i).
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价值-策略对偶性

证明.
证明基于线性规划的基本性质，即 (v∗, λ∗) 是原问题和对偶问题的最优解对当且仅当：

(a) v∗ 是原问题可行的，即 (I− γPa)v∗ − ra ≥ 0 对所有 a ∈ A 成立

(b) λ∗ 是对偶问题可行的，即
∑

a∈A(I− γPT
a )λ

∗
a = ξ 且 λ∗

a ≥ 0 对所有 a ∈ A 成立

(c) (v∗, λ∗) 满足互补松弛条件：

λ∗
a,i · (v∗i − γPa,iv∗ − ra,i) = 0 ∀i ∈ S, a ∈ A

其中 λ∗
a,i 是 λ∗

a 的第 i 个元素，Pa,i 是 Pa 的第 i 行
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价值-策略对偶性

证明（续）.
假设 (v∗, λ∗) 是原-对偶最优解。因此它满足 (a), (b), (c)，且 v∗ 是最优价值向量。

• 由最优价值函数的定义，我们知道 v∗i − γPπ∗(i),iv∗ − rπ∗(i),i = 0

• 由于 π∗ 是唯一的，我们有 v∗i > γPa,iv∗ + ra,i 如果 a 6= π∗(i)
• 因此，最优对偶变量 λ∗ 恰好有 |S| 个非零元素，对应于原问题的 |S| 个活跃行约
束

• 结合对偶可行性关系
∑

a∈A(I− γPT
a )λ

∗
a = ξ，我们得到

(I− γ(Pπ∗)T)
(
λ∗
π∗(i),i

)
i∈S

= ξ
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价值-策略对偶性

证明（续）.
• (I− γ(Pπ∗)T) 是可逆的

• 我们有
(
λ∗
π∗(i),i

)
i∈S

= (I− γ(Pπ∗)T)−1ξ，结合互补松弛条件可推出 λ∗ 是唯一的

• 类似地，我们可以从原问题可行性和松弛条件证明 v∗ = (I− γPπ∗)−1rπ∗
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定理的重要启示

定理 1 表明了最优对偶解 λ∗ 和最优策略 π∗ 之间的关键对应关系。特别地，可以从
λ∗ 的基中恢复最优策略 π∗：

π∗(i) = a, 如果λ∗
a,i > 0

换句话说，寻找最优策略等价于寻找最优对偶解的基。这表明学习最优策略是随机线
性规划的一个特例。
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2. Saddle Point Formulation
for DMDP
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What is Saddle Point?

定义 (鞍点 / Saddle Point)
在数学中，鞍点或极小极大点是函数图像表面上的一个点，在该点处正交方向上的斜
率（导数）都为零（临界点），但该点不是函数的局部极值。

鞍点的一个例子是：在一个临界点上，沿一个轴向（两个峰之间）有相对最小值，而沿
交叉轴向有相对最大值。

例如，函数 f(x, y) = x2 + y3 在点 (0, 0) 处有一个临界点，该点是鞍点，因为它既不是
相对最大值也不是相对最小值，且在 y 方向上没有相对最大值或最小值。
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鞍点的几何直观

图: 鞍点的几何示意图：z = x2 − y2

15 / 35



鞍点问题的引入

从 LP 到 Minimax 问题
我们将 LP 问题 (2) 改写为等价的 minimax 问题：

min
v∈R|S|

max
λ≥0

L(v, λ) = ξTv +
∑
a∈A

λT
a ((γPa − I)v + ra) (4)

变量维度

• 原变量 v 的维度为 |S|
• 对偶变量 λ = (λa)a∈A = (λa,i)a∈A,i∈S 的维度为 |S| · |A|
• 每个子向量 λa ∈ R|S| 是对应于约束不等式 (I− γPa)v− ra ≥ 0 的向量乘子

• 每个元素 λa,i > 0 是与 (I− γPa)v− ra ≥ 0 的第 i 行相关联的标量乘子
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修改的鞍点问题

问题修改的动机

为了开发高效的算法，我们对鞍点问题进行如下修改：

修改后的鞍点问题

min
v∈R|S|

max
λ∈R|S|×|A|

{
L(v, λ) = ξTv +

∑
a∈A

λT
a ((γPa − I)v + ra)

}
,

subject to v ∈ V , λ ∈ Ξ ∩∆

(5)
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约束集的定义

约束集

V =

{
v | v ≥ 0, ‖v‖∞ ≤

σ

1− γ

}
,

Ξ =

{
λ |
∑
a∈A

λa,i ≥ ξi, ∀i ∈ S
}

∆ =

{
λ | λ ≥ 0, ‖λ‖1 =

‖ξ‖1
1− γ

}
(6)

关键引理

我们将在后面证明 v∗ 和 λ∗ 分别属于 V 和 Ξ ∩∆（引理 1）。因此，修改后的鞍点问题
(5) 等价于原问题 (4)。
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引理 1：最优解的约束

引理 (最优解属于约束集)
假设 (v∗, λ∗) 是线性规划 (2), (3) 的原问题和对偶问题解对。则有：

‖v∗‖∞ ≤
σ

1− γ
, ‖v∗‖2 ≤

σ
√

n
1− γ

, ‖λ∗‖2 ≤ ‖λ∗‖1 =
‖ξ‖1
1− γ

, ξ ≤
∑
a∈A

λ∗
a
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引理 1 的证明（1/3）

证明.
(i) 注意到 v∗ = rπ∗ + γPπ∗v∗。我们有

‖v∗‖∞ ≤ ‖rπ∗‖∞ + γ‖Pπ∗‖∞‖v∗‖∞ ≤ ‖rπ∗‖∞ + γ‖v∗‖∞

因此我们有

‖v∗‖∞ ≤
‖rπ∗‖∞
1− γ

≤ σ

1− γ

(ii) 我们有 ‖v∗‖2 ≤
√

n‖v∗‖∞ ≤
√nσ
1−γ
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引理 1 的证明（2/3）

证明（续）.
(iii) 类似地，我们注意到 λ∗ = ξ + γ(Pπ∗)Tλ∗。注意到 λ∗ ≥ 0 且 ξ ≥ 0，我们有

‖λ∗‖1 = eTλ∗ = eTξ + γeT(Pπ∗)Tλ∗ = eTξ + γeTλ∗ = ‖ξ‖1 + γ‖λ∗‖1

因此我们有 (1− γ)‖λ∗‖1 = ‖ξ‖1 从而 ‖λ∗‖2 ≤ ‖λ∗‖1 = ∥ξ∥1
1−γ
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引理 1 的证明（3/3）

证明（续）.
(iv) 我们使用对偶可行性约束得到(∑

a∈A
λ∗

a

)
(I− γPT

π∗) =
∑
a∈A

λ∗
a(I− γPT

a ) = ξ

这意味着
∑

a∈A λ∗
a ≥ ξ 在元素意义上成立。
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3. Stochastic Primal-Dual Methods
for Reinforcement Learning
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3.1 Algorithm Description

24 / 35



MDP 的无模型学习设定

目标

我们希望开发的算法不仅适用于显式给定的 MDP 模型，而且也适用于强化学习。特
别地，我们关注无模型学习设定（model-free learning setting）。

无模型学习设定

• 已知信息: 状态空间 S、动作空间 A、奖励上界 σ 和折扣因子 γ（或时域 H）
• 未知信息: 转移概率 P 和奖励函数 r
• 采样预言机 (Sampling Oracle, SO): 接受输入 (i, a) 并生成新状态 j（概率为

Pa(i, j)）和随机奖励 r̂ija ∈ [0, σ]（期望值为 rija）
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算法说明

基本思想

受价值-策略对偶性（定理 1, 2）的启发，我们开发了一类用于 Bellman 方程鞍点表达
式的随机原-对偶方法。

SPD-dMDP 算法特点
• 维护最优价值函数的运行估计（即原解）和最优策略（即对偶解）
• 当从采样预言机中抽取新的状态和奖励观测时，对价值和策略估计进行简单更新
• 原变量更新：基于梯度下降
• 对偶变量更新：基于梯度上升
• 投影步骤：确保对偶变量满足约束 Ξ ∩∆

26 / 35



SPD-dMDP 算法（1/3）
算法 1: Stochastic Primal-Dual Algorithm for Discounted MDP
输入: Sampling Oracle SO, n = |S|, m = |A|, γ ∈ (0, 1), σ ∈ (0,∞)

初始化:
• v(0) : S 7→

[
0, σ

1−γ

]
任意初始化

• λ(0) : S ×A 7→
[
0, ∥ξ∥1σ1−γ

]
任意初始化

• 设 ξ = σ√ne

对于 k = 1, 2, . . . ,T 执行:
• 从 S 中均匀采样 i
• 从 A 中均匀采样 a
• 从 SO 中根据 (i, a) 条件采样 j 和 r̂ija
• 设 β =

√
n/k
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SPD-dMDP 算法（2/3）
算法 1（续）: 更新步骤
更新原变量:

v(k)(i)← max
{

min
{

v(k−1)(i)− β

(
1

mξ(i)− λ
(k−1)
a (i)

)
,

σ

1− γ

}
, 0

}
v(k)(j)← max

{
min

{
v(k−1)(j)− γβλ

(k−1)
a (i), σ

1− γ

}
, 0

}
v(k)(s)← v(k−1)(s) ∀s 6= i, j

更新对偶变量:

λ
(k− 1

2
)

a (i)← λ(k−1)(a, i) + β
(
γv(k−1)(j)− v(k−1)(i) + r̂ija

)
λ(k− 1

2
)(a′, i′)← λ(k−1)(a′, i′), ∀(a′, i′) s.t. a′ 6= a or i′ 6= i
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SPD-dMDP 算法（3/3）

算法 1（续）: 投影和输出
投影对偶变量:

λ(k) ← ΠΞ∩∆λ
(k− 1

2
)

其中 Ξ 和 ∆ 由方程 (6) 给出

输出:
• 平均对偶迭代: λ̄ = 1

T
∑T

k=1 λ
(k)

• 随机化策略 π̂，其中:
P(π̂(i) = a) = λ̄a(i)∑

a∈A λ̄a(i)
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3.2 Main Results
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主要结果

定理 (PAC Duality Gap)
对于任何 ϵ > 0，δ ∈ (0, 1)，令 λ̂ = (λ̂a)a∈A ∈ R|S|×|A| 为 SPD-dMDP 算法 1 生成的平
均对偶迭代，使用以下每次迭代的样本数量：

Ω

(
|S|3|A|2σ4

(1− γ)4ϵ2
ln
(
1

δ

))
.

那么对偶迭代 λ̂ 满足： ∑
a∈A

(λ̂a)
T(v∗ − γPav∗ − ra) ≤ ϵ

以至少 1− δ 的概率成立。
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样本复杂度

定理 (PAC Sample Complexity)
对于任何 ϵ > 0，δ ∈ (0, 1)，令 SPD-dMDP 算法 1 使用以下每次迭代的样本数量进行
迭代：

Ω

(
|S|4|A|2σ2

(1− γ)6ϵ2
ln
(
1

δ

))
,

那么输出策略 π̂ 以至少 1− δ 的概率是绝对 ϵ-最优的。
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精确恢复最优策略

定理 (Exact Recovery of The Optimal Policy)
对于任何 ϵ > 0，δ ∈ (0, 1)，令 SPD-dMDP 算法 1 使用以下样本数量进行迭代：

Ω

(
|S|4|A|4σ2

d̄2(1− γ)4
ln
(
1

δ

))
.

令 π̂Tr 通过将随机化策略 π̂ 舍入到最近的确定性策略获得，即：

π̂Tr(i) = argmaxa∈Aλ̂a,i, i ∈ S.

那么 P(π̂Tr = π∗) ≥ 1− δ。
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The End
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