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1. The Construction of LP
for MDP
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2. Saddle Point Formulation
for DMDP
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3. Stochastic Primal-Dual Methods
for Reinforcement Learning



3.1 Algorithm Description
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SPD-dMDP &% (2/3)

VR (1) « max {min {v<k—1>(i) .y (15(,') - )\E,k_l)(i)) — } ,o}

Jﬂwe—mw{mm{¢“”m—nﬁﬁ“”w, o }m}
VO (s) = ED(s) Vs, j

EHXEEE:

k=3) (s . . e L VT
MNP0 24D (a0 + 8 (WD) — M) + 1)
)\(k*%)(a’, 1)« XN@G N, V@, ) st d #£aori £i

28/35
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3.2 Main Results
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