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1. Basic Prophet Inequality
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问题设定

盒子序列问题

有 n 个盒子 1, 2, . . . , n。每个盒子 i 包含一个不可见的数字 vi ≥ 0，从独立的分布 Fi
中抽取。盒子按顺序 1, 2, . . . , n 到达。

决策规则

• 当盒子 i 到达时，我们观察到 vi 并需要决定是否接受该盒子

• 如果接受盒子 i，游戏结束，我们的奖励是 vi
• 如果让盒子 i 通过，我们无法再回去取回它
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算法任务

目标

算法任务是设计一个算法，给定分布 F1, · · · ,Fn，最大化期望奖励。

后向归纳算法

• 如果等到最后一个盒子，我们将获得的期望奖励是 E[vn]

• 给定这一点，当盒子 n − 1 到来时，我们应该只接受任何大于 E[vn] 的值

• 这允许我们计算等待最后两个盒子时获得的期望值
• 以此类推，后向归纳使我们能够知道盒子到达的顺序

阈值算法

当每个盒子 i 到达时，算法持有一个阈值 θi，使得我们接受盒子 i 当且仅当 vi ≥ θi。不
难看出 θi 随着 i 的增加而减小。
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Prophet Inequality 问题

与先知的比较

然而，先知不等式问题提出了一个更关注信息价值的问题。它关注的是将在线算法的
性能与先验基准进行比较：

• 如果先知事先知道盒子中的所有值，那么先知的期望表现是 E[maxi vi]

• 一个只知道分布的在线算法与这个基准相比表现如何？
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主要定理

定理 (prophet inequality)
存在一个阈值 θ，使得接受第一个值至少为 θ 的盒子可以获得期望值至少为
1
2E[maxi vi]。

对于任何 ϵ > 0，不存在在线算法的性能保证至少为 (0.5 + ϵ)E[maxi vi]。

这个定理表明，即使在完全不确定的情况下，一个简单的阈值策略也能获得先知期望
值的至少一半。这个 1

2 的比率是紧的。

7 / 35



1.2 Quantile Approach
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分位数方法

Quantile Approach
令随机变量 v∗ = maxi vi。那么 v∗ 的累积分布函数是 F =

∏
i Fi。令 θ 为 F−1(12)。

假设 Pr[∃i, vi = θ] = 0；这在所有分布都是原子分布时是成立的。

目标

我们证明接受第一个值至少为 θ 的盒子可以获得期望值至少为 1
2E[v∗]。
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先知值的上界

期望值分解

首先给出先知值的上界：

E[v∗] = 1

2
E[v∗ | v∗ < θ] +

1

2
E[v∗ | v∗ ≥ θ]

≤ 1

2
θ +

1

2
E[θ + (v∗ − θ) | v∗ ≥ θ]

= θ +
1

2
E[(v∗ − θ) | v∗ ≥ θ]

= θ + E[(v∗ − θ)+]

其中 (x)+ = max(x, 0)。
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阈值算法的分析

算法保证

以概率 1
2，阈值为 θ 的算法接受一个盒子，我们至少可以获得收益 1

2θ。

在此之上，如果可能接受的盒子价值严格大于 θ，则它会贡献额外的期望收益：

∑
i
E[(vi − θ)+] · Pr[box i is looked at]

≥
∑

i
E[(vi − θ)+] · Pr[no box is taken in the end]

=
1

2

∑
i
E[(vi − θ)+] ≥

1

2
E[(v∗ − θ)+]

因此，算法总共获得的期望值至少为 1
2(θ + E[(v∗ − θ)+])。

11 / 35



重要说明

Remark
在分析 (vi − θ)+ 部分时，我们规定了：Pr[no box is taken in the end] ≥ 1

2；

而在分析 θ 部分时，我们规定了 Pr[a box is taken in the end] ≥ 1
2 。

因此原子性假设很重要。如果条件不成立，需要非常小心地打破平局。（如何做？）
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1.3 An Economic Interpretation
and Balanced Price Approach
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经济学解释

拍卖视角

如果我们考虑向一系列竞标者出售单个物品，其中每个竞标者 i 的估值 vi 独立地从分
布 Fi 中抽取，那么阈值算法可以被视为最简单的销售策略：

• 发布价格 θ

• 将其出售给第一个愿意以该价格购买的买家 i，即 vi ≥ θ

问题目标

问题要求制定一个销售策略，使得期望中购买该物品的买家具有较高的估值。这在经
济学中被称为社会福利最大化（social welfare maximization）。
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收益与效用

经济学视角下的解释

在这个视角下：

• θ · Pr[某个买家购买] 是卖家的收益（revenue）（或者说，卖家的效用）
• ∑

i(vi − θ)+ · Pr[i 被考虑] 是买家的效用（utilities）之和

关键观察

因此，我们上面执行的计算分别约束了收益和卖家的效用，而交易的福利就是卖家收
益和买家效用之和！
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Balanced Price Approach

收益与效用

考虑 θ = 1
2E[maxi vi]。在这个发布价格 θ 下，令 p 表示任何买家购买的概率。

那么卖家的收益是 θp。买家的效用是：∑
i
E[(vi − θ)+] · Pr[buyer i has an opportunity to purchase]

≥
∑

i
E[(vi − θ)+](1− p) ≥ (1− p)E

[
max

i
vi − θ

]
= (1− p)θ.

结论

因此福利至少为 θ。
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1.4 The Lower Bound
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下界构造

紧性证明

考虑两个盒子：

• v1 确定性地为 1

• v2 以概率 1/h 为 h，以概率 1− 1/h 为 0，其中 h 是任意大的数

性能比较

• 先知在这个实例上的表现是 2− 1/h
• 任何在线算法，无论是接受还是不接受第一个盒子，都不能获得超过 1 的值

结论

因此 1
2 是紧的。
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2. Matroid Prophet Inequalities
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问题设定

Matroid 约束下的盒子选择
如前所述，令 [n] 为一组盒子，每个盒子 i 包含独立从分布 Fi 中抽取的值 vi。令M 为
[n] 上的一个 matroid，I 为独立集的集合。

规则

• 盒子按对抗性顺序到达，该顺序在算法之前是已知的
• 不失一般性，假设盒子按顺序 1, 2, . . . , n 到达
• 算法在看到盒子 i 的值 vi 时必须决定是否接受该盒子，并且不能稍后撤回已接受
的盒子

• 在任何时候，算法接受的盒子集合必须是M 的独立集
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算法目标

优化目标

算法的目标是最大化接受盒子中的总价值。

基准定义

自然的先知基准是 E[maxS∈I
∑

i∈S vi]。接下来我们定义 ex ante 基准：令 PM 为与
matroid M 相关联的多面体，ex ante 最优定义为：

max
x∈PM

∑
i
E [vixi | vi is in the top xi quantile of Fi] . (1)

注意

容易看出 ex ante 最优不少于先知基准。Ex ante 基准通常严格大于先知，尽管差距由
e

e−1 的因子界定，这被称为相关性差距（correlation gap）（Agrawal et al., 2012）。
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阈值算法

阈值算法

阈值算法在每个盒子 i 到达时计算一个阈值 θi，使得盒子 i 被接受当且仅当 vi ≥ θi。
需要注意两点：

• 阈值 θi 的计算仅使用盒子 i 到达之前的信息，包括观察到的值 v1, . . . , vi−1 和盒子
i − 1 之后接受的盒子集合，我们记为 Ai−1；

• 如果 Ai−1 ∪ {i} /∈ I，那么 θi 应该设为 ∞。

定理

存在一个阈值算法，其期望收集的总价值至少为 ex ante 最优的一半。
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Ex ante 的具体表示

定义

我们将在 v′ = (v′1, . . . , v′n) 上定义一个相关分布。这些随机变量独立于 v 但具有相同的
边际分布。定义：

x∗ := argmax
x∈PM

∑
i
E [vixi | vi is in the top x∗i quantile of Fi] .

由于 x∗ ∈ PM，x∗ 可以表示为凸组合 x∗ =
∑

S∈I αS1S，其中 1S 是集合 S 的指示变
量，

∑
S αS = 1，αS ≥ 0, ∀S。v′ 由 x∗ 定义：首先以概率 αS 抽取 x ∈ {0, 1}n，使得

x = 1S；然后对每个 i ∈ [n]，如果 xi = 1，v′i 从 Fi 的顶部 x∗i 分位数中抽取；否则 v′i 从
Fi 的底部 1− x∗i 分位数中抽取。
v′i 有 x∗i 的概率来自 Fi 的顶部 x∗i 分位数，且 1− x∗i 的概率来自底部 1− x∗i 分位数。
因此这样的构造下，v′i 的边际分布与 vi 相同，不同的是 v′i 之间存在相关性。
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Ex Ante 最优的上界
命题 1
Ex ante 最优至多为 E[maxS∈I

∑
i∈S v′i]。

证明.
{αS}S 定义在 x∗ 的实现下，独立集上的分布。FS 表示给定 S 时 v′ 的条件分布。那么：

Ev′

[
max
S∈I

∑
i∈S

v′i

]
≥ ES∼α

[
Ev′∼FS

[∑
i∈S

v′i

]]

= ES∼α

[∑
i∈S

E[vi | vi is in the top x∗i quantile of Fi]

]

事实上这个上界也是可以取等的，因为 E[maxS∈I
∑

i∈S v′i] 所枚举的不同 v′，令
maxS∈I

∑
i∈S v′i 达到最大值的 S 恰好是 v′i is in the top x∗i quantile of Fi 的集合。 24 / 35



记号说明

Notations
令 Ai 表示阈值算法在第 i 个盒子之后接受的盒子集合，A = An 为最终选择；对于任
何 v′i 的实现，令 B = argmaxS∈I

∑
n∈B v′i.

定义 B 的一个划分 B = R ∪ C,R ∩ C = ∅，其中 A ∪ R ∈ I, |C| = |A|；令 R(A) 和 C(A)
为所有合法划分中

∑
i∈R(A) v′i 最大的那个划分。注意 A 仅依赖于 v，而 C(A) 和 R(A)

依赖于 v 和 v′。
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α-平衡定义

定义

如果对于任何实现的 v，对于任何 V ⊆ [n] 使得 V ∪ A ∈ I，算法使用的阈值满足：

∑
i∈A

θi ≥
1

α
E

 ∑
i∈C(A)

v′i

 , (2)

∑
i∈V

θi ≤
(
1− 1

α

)
E

 ∑
i∈R(A)

v′i

 . (3)

那么阈值算法被称为是 α-平衡的。
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α-平衡算法的性能

引理 (Lemma 3)
α-平衡阈值算法获得的期望值至少为 ex ante 最优的 1

α 倍。

证明

根据 v′ 的定义，R(A) 和 C(A)，ex ante 最优为 E[
∑

i∈C(A) v′i +
∑

i∈R(A) v′i]。
由 (2)，

Ev

[∑
i∈A

θi

]
≥ 1

α
Ev

Ev′

 ∑
i∈C(A)

v′i

 . (4)
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证明（续）

福利分解

通过经济学解释（见 Section 1.2），这部分价值可以看作收益，剩余部分是效用，我们
将其下界如下：

Ev

[∑
i∈A

(vi − θi)+

]
= Ev

∑
i∈[n]

(vi − θi)+

 = Ev,v′

∑
i∈[n]

(v′i − θi)+


≥ Ev,v′

 ∑
i∈R(A)

(v′i − θi)+

 .

第一个等式来自阈值算法的定义。第二个等式来自以下事实：
(a) θi 仅依赖于 v1, . . . , vi−1 但不依赖于 vi，也不依赖于 v′；
(b) v 独立于 v′，因此特别地 v′i 独立于 v1, . . . , vi−1, θi；
(c) v′i 与 vi 有相同的边际分布。 28 / 35



证明（续）

应用不等式 (3)
我们现在可以应用 (3) 并得到：

Ev′

 ∑
i∈R(A)

(v′i − θi)+

 ≥ Ev′

 ∑
i∈R(A)

v′i

− Ev′

 ∑
i∈R(A)

θi


≥ Ev′

 ∑
i∈R(A)

v′i −
(
1− 1

α

)
Ev′

 ∑
i∈R(A)

v′i

 =
1

α
Ev′

 ∑
i∈R(A)

v′i

 . (5)

引理通过对 (4) 和 (5) 求和得出。
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2-平衡阈值算法

下一步我们将通过引理 3 构造一个 2-平衡阈值算法。

引理 (Lemma 4)
具有以下阈值的阈值算法是 2-平衡的：对于每个盒子 i，如果 Ai−1 ∪ {i} /∈ I，令 θ 为
∞；否则 θi :=

1
2(f(Ai−1)− f(Ai−1 ∪ {i}))。

其中定义 f : I → R 为 f(S) := E[
∑

i∈R(S) v′i]。
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子模性的定义

定义 (子模函数)
对于一个集合函数 f : 2[n] → R（或在本文中定义在独立集族 I 上），如果对任意集合
S,T ⊆ [n]（且属于定义域），有：

f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T),

则称 f 是子模的。

等价定义（边际递减性质）

对于任意 X ⊆ Y ⊆ [n] 和元素 e /∈ Y，有：

f(X ∪ {e})− f(X) ≥ f(Y ∪ {e})− f(Y).

即：增加一个元素带来的边际增益，随着集合的扩大而减小。
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2-平衡阈值算法

证明

我们检验 2-平衡性的两个性质。对于任何 v，将 A 中的元素编号为 a1, . . . , ak，令 a0
为 0，那么：

∑
i∈A

θi =
1

2

k∑
j=1

f(Aaj−1)− f(Aaj)

=
1

2
[f(A0)− f(Aak)] =

1

2
[f(∅)− f(A)]

=
1

2
E

 ∑
i∈C(A)

v′i

 .
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2-平衡阈值算法

证明（续）

容易证明 f(·) 是子模的。对于任何 V ⊆ [n] 使得 A ∪ V ∈ I，令 V 中的元素为
a1, . . . , ak，令 Wj 为 A ∪ {a1, . . . , aj}，对 j = 1, · · · , k，且 W0 = A，那么：∑

i∈V
θi ≤

1

2

∑
i∈V

(f(A)− f(A ∪ {i}))

≤ 1

2

k∑
j=1

(f(Wj−1)− f(Wj)) =
1

2
f(A).
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The End
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