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Abstract. Autobidding is becoming increasingly important in the
domain of online advertising, and has become a critical tool used by
many advertisers for optimizing their ad campaigns. We formulate fun-
damental questions around the problem of bidding for performance under
very general affine cost constraints. We design optimal single-agent bid-
ding strategies for the general bidding problem, in multi-slot truthful
auctions. The novel contribution is to show a strong connection between
bidding and auction design, in that the bidding formula is optimal if and
only if the underlying auction is truthful.

Next, we move from the single-agent view to a full-system view: What
happens when all advertisers adopt optimal autobidding? We prove that
in general settings, there exists an equilibrium between the bidding
agents for all the advertisers. As our main result, we prove a Price of
Anarchy bound: For any number of general affine constraints, the total
value (conversions) obtained by the advertisers in the bidding-agent equi-
librium is no less than 1/2 of what we could generate via a centralized
ad allocation scheme, one which does not consider any auction incentives
or provide any per-advertiser guarantee.

Keywords: Automated bidder · Price of anarchy · Constrained
optimization

1 Introduction

Autobidding is taking on an increasingly important role in online advertising [5]
and has already become a critical tool used by many advertisers for optimiz-
ing their ad campaigns. Given its importance in the ad ecosystem, autobidding
deserves fundamental investigation into algorithms and properties. In this paper,
we formulate the questions of designing optimal bidding algorithms, study the
interaction of bidding with the underlying auction, and study system equilibrium
properties when all advertisers adopt autobidding.

The motivation behind autobidding is performance and product simplicity.
The main idea is that instead of asking advertisers for fine-grained bids (e.g., a
bid per keyword), the ad platform asks for higher level goals and higher level
constraints. An Autobidding agent then converts these goals and constraints into
per-query bids at serving time, based on predictions of performance of each
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potential ad impression. Besides increased performance, these products also pro-
vide for a much simpler interaction with the ad system. For example, in some
settings like Google’s Universal App Campaigns (UAC) product [6], advertis-
ers do not target at all, but only provide targets for cost-per-install and other
goals. In other cases advertisers continue targeting via keywords to identify what
queries are of interest, but let the system adjust bids based on predicted perfor-
mance. In either case, the bidding agent will automatically adjust bids so as to
give maximum performance for the campaign, even in a dynamically changing
environment, as query volume and features change over time.

There are several autobidding products in the market. The simplest and
oldest is that of budget optimization, in which the advertiser provides target-
ing and a (daily) budget, and the system bids on its behalf. This is a well-
studied topic with significant related work. We now have increasingly sophisti-
cated products which allow for performance-based optimization of campaigns,
based on goals that advertisers may care more about, by leveraging predicted
conversions (sales). For example, Target Cost-per-acquisition (tCPA), Enhanced-
CPC (ECPC), and products aiming for deeper optimizations, such as Return on
Ad Spend (ROAS), and post-install-value optimization (see, e.g., [5] for more
detailed description of these products).

In this paper we formulate and answer several fundamental questions in auto-
bidding. Specifically, (1) find an optimal bidding formula for very general con-
straints and connect it to the truthfulness of the underlying auction, and (2)
quantify the price of anarchy in equilibrium when all advertisers adopt the opti-
mal autobidding.

Remark: These are critical questions from an ad platform’s point of view, but
they are also interesting and novel from a purely theoretical view as several of
the important autobidding products go beyond the classic profit-maximization
setting and instead, follow the framework of maximizing value (e.g., number of
conversions) under constraints on the average cost (of clicks or conversions) and
a budget on total spend. One can consider such objectives and constraints as
generalizations of the well-studied budget constraint – the difference now is that
the cap on spend is not a fixed number (i.e., budget), but is a function of the
specific items allocated (see Sect. 2 for details).

1.1 Overview, Results, and Techniques

In Sect. 2 we formulate the single agent bidding problem, for the general setting
of value maximization under general affine constraints (in a multi-slot truth-
ful auction). Specifically, given an advertiser’s goals and constraints, and given
predictions at query time, how should the bidding agent bid on behalf of the
advertiser? This formulation generalizes all the autobidding products we men-
tioned above. Our two main results are:

– In Sect. 3 we show how to derive an optimal bidding formula assuming we
have access to the cost-value landscape. In particular, we show that there is
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a simple bidding formula which takes in the value for an item (including the
predictions for probability of click or conversions), and converts it into a bid
into the auction. While the technique of using LP duality to find an optimal
allocation is not entirely new, our novel contribution here is to connect it
to bidding, and more specifically, back to the truthfulness of the auction and
show that the bidding formula is optimal if and only if the auction is truthful.

– In Sect. 5, we prove a “price-of-anarchy” result which is the most technically
challenging and novel portion of the paper: For an autobidding setting with
any number of general affine constraints, if all advertisers adopt autobidding,
then the total value generated for all advertisers in equilibrium is at least a
factor 1/2 of the total value we could generate via a centralized ad allocation
scheme – one which does not need to consider any pricing or auction incentives
constraint, or have any per-advertiser optimization guarantee.

For this result, we extend the definition of liquid welfare [3,11] from the
budgeted setting to the general affine constraints setting. Then, we use a
charging argument, in which we use the structure of equilibrium bids, the
truthfulness property of the underlying auction, as well as the nature of the
affine constraints to bound the liquid welfare of global allocation in terms of
the liquid welfare at equilibrium.

For the sake of completeness, we also provide two additional results, which
may be considered as using somewhat standard techniques from the literature:
Firstly, in Sect. 4, we show how a Multiplicative Weights Update based method
of control feedback can help find the optimal parameters of the bidding formula
assuming full access to the cost-value distribution. While the algorithm is a
simple instantiation of MWU for solving LPs, which is standard, we do this
by interpreting the hyperplanes generated by MWU with dual weights as the
realization of a truthful auction, thus connecting truthfulness to the bidding
formula.

Secondly, we show in Sect. 6 that, for multi-slot, general constraints setting,
there exists a pure strategy bidding equilibrium, under certain technical smooth-
ness assumptions. This result follows by defining a map from the space of dual
variables to itself, using the optimal bidding formula, so that the fixed point of
the map are the optimal parameters of the formula.

1.2 Related Work

Bidding algorithms have been studied previously in various forms and we
describe some related work below. We have specifically two new contributions:
the connection of bidding in auction with the truthfulness of the underlying
auction, and analyzing the setting of multiple advertisers bidding optimally in
a truthful auction and bounding the price of anarchy.

As mentioned above, perhaps the simplest autobidding product is budget
optimization. This has been a well-studied topic, in particular [13] provided a
formulation for this problem, and gave simple practical uniform bid strategies
which achieve a constant factor of the optimal bidding under any auction –
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however, they do not consider multiple bidders or equilibrium properties. Also
somewhat related is work on back-end system optimization for budget man-
agement (not as a bidding agent); this includes work on ad allocation, budget
throttling, and bid lowering, e.g., [4,8,12,15–17].

Besides budget optimization bidding, previous literature includes several
results on the so-called real-time bidding (RTB) in the context of display ads.
A related paper is [9], which considers the problem of bidding algorithms for
performance advertising. Similar to the work here, they use a Primal Dual for-
mulation to find a bidding formula. However, there are some salient differences
compared to our work: Firstly, their objective is global value maximization (sum
over all bidders values) under volume constraints. Secondly, the pricing is simply
first price, and it is not immediately clear how to extend this to second price
auction (or a truthful auction for multiple slots). Bidding into an auction is a
more difficult question, as bidders set prices for each other and thus have to be in
equilibrium. Indeed, we show that no bidding formula can work in a non-truthful
multi-slot auction, and even in a second price auction, the global value generated
in an equilibrium solution can be bounded away from the global optimum by a
factor of as much as 2.

There are several other interesting papers on RTB, e.g., [14,19,20]. The latter
paper focuses on learning the underlying traffic distributions and using them to
find a bid. The bidding question considered there is simple if the distribution is
known (due to the simple nature of the constraints), but the innovation lies in
learning the distributions from possibly partial feedback, which is not the focus
of our work.

In another related work [7], the authors consider a different but related equi-
librium question, in the setting of backend budget throttling (aka pacing, in
which a budget constrained advertiser is throttled out of some subset of unprof-
itable auctions). The authors consider the question of whether there is a regret-
free stable solution if we use optimal budget throttling for all budget constrained
bidders in a single slot auction. However, they do not further analyze the price
of anarchy in such a stable solution.

Finally, a very relevant line of work is that of solving online stochastic linear
programs [10] and online stochastic convex programs [1]. The specific problems
we study are actually instantiations of the more general problem they study, and
they also use duality theory to find optimal allocations (in more general settings
with stochastic input). We note two novel contributions in our work: Firstly, the
connection to truthfulness, i.e., the dual based allocation gives rise to a bidding
formula which is optimal if and only if the auction is truthful. And secondly, we
study the equilibrium properties if every bidder uses this algorithm in a truthful
auction, and prove a bound on the price of anarchy.

2 Preliminaries

There is a set of advertisers A bidding into an ad auction. There is a large set of
queries I, each with potentially multiple slots (aka positions) S. For each query
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i, there is an auction which takes in bids and determines which advertisers show
in which slots, and determines a cost-per-click (cpca

is) for each advertiser a ∈ A
and slot s ∈ S.

We define indices into different sets as follows. Let i ∈ I be an query, s ∈ S
be a slot and c ∈ C be a constraint. Let the click through rate (CTR), the
probability that a user clicks on an ad of advertiser a on slot s of query i be
ctra

is. Let the cost per click for winning slot s of query i be cpca
is. Let the value to

a of a click on impression i be va
i – this is the estimate of the total downstream

value accrued by a after the click, which we assume is independent of the slot
s that the ad was in. Let xa

is be indicator variable if slot s of impression i was
allocated to a. Note that we will also abuse notation and refer to query i as an
impression (which makes sense for the case when |S| = 1).

We study the problem of finding an optimal bidding strategy for each adver-
tiser a ∈ A, assuming that the bids of all other advertisers are fixed. For this
problem, even though all the parameters in the problem definitions are indexed
by a, for simplicity we drop the index a when we study the optimal bidding
strategy for a (here, and in Sects. 3 and 4). In Sects. 5 and 6 we will reintroduce
the index a as we study what happens when all advertisers bid according to the
proposed bidding formula.

The goal of an advertiser is to maximize its total value i.e.
∑

i,s xisctrisvi.
Additionally we have several affine constraints on the spend of the advertiser.
This can be formalized by integer program in Fig. 1, in which the index c stands
for the constraints, and the vic are non-negative constants (one per query and
constraint).

max
∑

i,s

xisctrisvi

∀c,
∑

i,s

xisctriscpcis ≤ Bc +
∑

i,s

xisctrisvic

∀i,
∑

s

xis ≤ 1

∀i, s, xis ∈ {0, 1}

Fig. 1. The Integer Program for value maximization for an advertiser under general
affine constraints.

Next we show how many products in the industry can be modeled with the above
set of constraints.

Budget Optimization: In this case there is a single constraint c with vic = 0 ∀i,
and Bc is the budget B. So the constraint is simply

∑
i,s xisctriscpcis ≤ B. Here,

vi is sometimes taken to be 1 for all i, which means the goal would be to maximize
clicks.
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Target CPA: In the TCPA product the goal is to maximize the number of
conversions subject to the constraint that average cost per conversion does not
exceed an advertiser given target value T . Here once again we have a single con-
straint c. Here vi represents the predicted number of conversions (aka acquisi-
tions, or sale events) that the advertiser gets after a click on impression i (usually
called pcvri, and also assumed to be independent of the slot s). We take Bc = 0
and vic = T · vi, ∀i. Note that we can rewrite the constraint which becomes∑

i,s xisctriscpcis
∑

i,s xisctrisvi
≤ T . This means that the ratio of the total expected spend to

the total expected number of conversions should be at most T , as required.

Target on CPA and CPC: In some bidding products the goal is to maximize
number of conversions, but we have two constraints. One is to ensure that average
cost per conversion does not exceed T (the same as in TCPA) and the other is
to ensure that average cost per click is at most M (both T and M are given by
the advertiser). For the second constraint we set Bc = 0 and vic = M .

Note that the last two settings above can also be accompanied by a separate
budget constraint.

We will also make an assumption throughout that the parameters of this
problem are in general position.

3 Bidding Formula

In this section we show that there is an optimal bidding formula of the form
b(i) = vi+

∑
c αcvic∑
c αc

, and this holds if and only if the auction is truthful. If an
advertiser bids according to this bidding formula then they violate their con-
straints by at most |C| impressions (where |C| is the number of constraints) and
get a value which is at least the value of an optimal bidding strategy minus the
value of at most |C| impressions.

To prove the result we consider Integer Program 1 and relax it to a Linear
Program and also consider the corresponding dual LP.

Primal Linear Program

max
∑

i,s

xisctrisvi

∀c,
∑

i,s

xisctriscpcis ≤ Bc +
∑

i,s

xisctrisvic

∀i,
∑

s

xis ≤ 1

∀i, s, xis ≥ 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Dual Linear Program

min
∑

i

δi +
∑

c

αcBc

∀i, s

∣
∣
∣
∣

δi+∑
c αcctris(cpcis − vic)

}

≥ctrisvi

∀i, δi ≥ 0
∀c, αc ≥ 0

Let {αc} be the optimal dual solution. Define

Δis = ctrisvi −
∑

c

αcctris(cpcis − vic)

Then the dual constraints can be written as δi ≥ Δis ∀i, s.
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Now define the bidding formula as

b(i) :=
vi +

∑
c αcvic∑

c αc

This is the bid that the bidder puts into the auction for query i. The auction
determines the slot and price for the bidder. We will assume that ties are broken
arbitrarily. Note that the dual constraints can also be written as

δi∑
c αc

≥ ctris(bi − cpcis), ∀ i, s (2)

We first note some properties of the optimal solution to the primal and dual
programs.

Lemma 1. Let {xis} and {αc} be optimal solutions to primal and dual linear
program. Then they satisfy the following properties.

1. δi = max(0,maxs(Δis))
2. If δi > 0 and there is a unique s such that δi = Δis then xis = 1
3. If δi = 0 with b(i) < cpcis,∀s then xis = 0.
4. There can be at most |C| impressions i such that ∃s �= s′ with δi = Δis = Δis′ .
5. There can be at most |C| impressions i such that δi = 0 and ∃s, b(i) = cpcis.

Proof. The proof follows from linear programming complementary slackness and
will be included in the full version of the paper.

Theorem 1. Bidding strategy b(i) gives a solution which has value at least OPT
minus value of 2|C| impressions and violates each constraint by at most 2|C|
impressions if and only the auction is truthful.

Proof. Fix a query i, for which the bidder’s bid is bi. A truthful auction will
allocate the bidder to the slot which maximizes its profit given the bid, i.e., the
slot s which maximizes ctris(bi−cpcis) (of course the cpcs are derived during the
auction itself from other bidders). A non-truthful auction will, for some value
of the bid bi (and some values of other bidder bids) allocate the bidder to some
other slot s′ �= s.

Now consider the LP. By Lemma 1 point 2 xis = 1, precisely for the tight
dual constraint. But, by Eq. (2), this is precisely the one which maximizes the
profit. Therefore the LP allocation solution matches the solution that a truthful
auction would choose with the same bids, and would not match the allocation
of a non-truthful auction, for at least some values of bids.
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Next we prove the bound on the value achieved by the bidding strategy to
compare it to the optimal achievable value.

Value of bidding strategy

≥
∑

δ>0,unique s with δi=Δis

ctrisvi

=
∑

δ>0,unique s with δi=Δis

xisctrisvi

=
∑

i,s

xisctrisvi −
∑

i,s,δ=0 or Δis=Δis′

xisctrisvi

≥
∑

i,s

xisctrisvi − |C| · maxisctrisvi

= OPT − 2|C| · maxisctrisvi

Here Eq. 1 is because bidder wins at least these impressions, Eq. 2 is from
Lemma 1 point 2 and Eq. 4 is from Lemma 1 points 3, 4, 5. Next we show
that the constraints are violated by at most 2|C| impressions. This is simple
because by Lemma 1, Points 3, 4, 5 there are at most 2|C| impressions for which
xis = 1 and bidder doesn’t win it or xis < 1 and bidder wins it.

We will include an intuitive example illustrating the bidding formula in full
version of the paper.

4 Bidding Algorithm

In this section we will give a bidding algorithm which computes the bidding
formula and bids accordingly. The algorithm is an application of multiplicative
weight update (MWU) method. While it is well known how to use MWU to solve
a linear program we note that we specifically need a bidding formula which does
not depend on other bidders bids. We show how feasibility oracle used in MWU
to solve linear program translates to bidding formula and hence the bidding
formula can be used to answer the separation oracle.

We use the MWU algorithm to solve Ax ≥ b subject x ∈ P when a feasibility
oracle for any c, d,∃?x ∈ P : cT x ≥ d is given. We borrow this from Sect. 3.2 of [2]
(Included in full version of the paper). MWU in each step maintains a weight
vector w of same number of rows as A and in each step multiplicatively updates
w based on how much each constraint is violated from solution in previous step.
Then in each step it asks oracle question of the form wT Ax ≥ wT b.

Let V be upper bound on what the OPT and let Vc be an upper bound on
|Bc +

∑
i,s xisctris(vic − cpciks)|.

Theorem 2. In T ≥ O( 1
δ3 ) steps Algorithm 1 converges to a solution which

satisfies the following.

1. Value≥ OPT − δ · V.
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2. For each constraint we have
∑

i,s xisctris(cpcis − vic) ≤ Bc + δVc

Algorithm 1. Bidder
1: for i = 1, . . . , O( 1

δ
) do

2: VOPT = i · δ · V (Guess for the value of OPT )
3:

A =

⎛
⎜⎜⎝

· · · · · · · · · ctrisvi/V · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · ctris(vic − cpcis)/Vc · · ·
· · · · · · · · · · · · · · ·

⎞
⎟⎟⎠ b =

⎛
⎜⎜⎝

VOPT /V
· · ·

−Bc/Vc

· · ·

⎞
⎟⎟⎠

Where each row (except first one) of A corresponds to constraint c and column
for impression/slot i, s.

4: P be a convex constraints on xis denoting 0 ≤ xis and
∑

s xis ≤ 1.
5: Run algorithm MWU to check feasibility of Ax ≥ b such that x ∈ P .
6: for t = 1, . . . T (Each step of MWU) do
7: Let wt = (wt

1, w
t
2, . . .) be the weight vector maintained by MWU.

8: Let αc = (wt
c+1/Vc)/(wt

1/V)
9: Define oracle O for F = ∃?x ∈ P : wT Ax ≥ wT b.

- Run bidder with bidding strategy
vi+

∑
c αcvic∑
c αc

- Let xis = 1 if bidder won the impression at slot s, otherwise xis = 0.
- Check if this solution {xis} satisfies wT Ax ≥ wT b

10: end for
11: If algorithm MWU returns infeasibility then break
12: end for

Proof. Consider the value of i such that OPT ≥ i · δ · V ≥ OPT − δ · V. We will
fix this iteration for the remaining part of the proof. We know that for such i we
have feasible solution for Ax ≥ b, x ∈ P . By proof of MWU we know that as long
as oracle O is implemented such that feasibility of F = ∃?x ∈ P : wT Ax ≥ wT b
correctly then MWU returns a feasible solution. We show this by showing that
this is equivalent to the bidding strategy in step 9.

First note that bidder in step 9 which produces solution xi = 1 if and only
if vi+

∑
c αcvic∑
c αc

≥ cpcis. We will show that checking wT Ax ≥ wT b for the output
of bidder is equivalent to solving F .

w
T

Ax − w
T

b =

⎛

⎝
∑

i,s

wt
1xisctrisvi

V +
∑

i,s,c

wt
c+1xisctris(vic − cpcis)

Vc

⎞

⎠ − wt
1VOPT

V +
∑

c

wt
c+1Bc

Vc

=
wt

1

V
∑

c

αc

∑

i,s

xisctris

(
vi +

∑
c αcvic

∑
c αc

− cpcis

)

− wt
1VOPT

V +
∑

c

wt
c+1Bc

Vc

It is easy to see that the right hand side is maximized when xis = 1 when
vi+

∑
c αcvic∑
c αc

≥ cpcis which is the exact set of impressions/slots won by the bidder.
Hence it is enough to check for this vector if wT Ax ≥ wT b which completes the
proof.
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5 Price of Anarchy

In this section we show a factor 1/2 price of anarchy of any bidder which opti-
mizes for each bidder separately as opposed to optimizing globally for everyone.
We consider the special case when each impression has a single slot and hence
we will drop the subscript s from remaining part of this section.

5.1 Price of Anarchy Objective

We consider Liquid Welfare as defined in [3] as our objective function. This is
defined as sum over all advertisers of the maximum revenue that can be got from
an advertiser. This turns out to be the following.

∑

a

(

min
c

Bc
a +

∑

i

xa
i ctra

i va
ic

)

Let OPT be the welfare objective achieved by OPT and let ALG be the
welfare objective achieved at equilibrium. Also for any subset S of bidders, define
OPT (S) to be the contribution of bidders in S to OPT’s welfare objective. Define
ALG(S) analogously.

5.2 Price of Anarchy Is Bounded by 2

Let c′(a) be one of the indices that decides the contribution of bidder a of OPT’s
welfare objective function. Let C(a) be the set of constraints that are tight for
bidder a (let C(a) be empty if no constraints are tight). Let A1 be the set
of bidders who are completely unconstrained at equilibrium and let A2 be the
remaining bidders.

Bidders in A1 are bidding infinity at equilibrium and are winning everything
they are interested in. So for a ∈ A1, a’s contribution to ALG is

∑
i va

i which
is the maximum possible contribution that bidder a can make to the welfare
objective.

ALG(A1) >= OPT (A1)

Next we split OPT (A2) into two parts and bound each separately. For this,
define O(a) to be the set of impressions allocated to bidder a in OPT, and let
A(a) be the set of impressions allocated to bidder a at equilibrium.

The proof is by a charging argument to bound the liquid welfare of the global
allocation in terms of global welfare at equilibrium. For this, we consider two
types of impressions – impressions where the global optimal allocation overlaps
with the allocation at equilibrium (i.e. O(a) ∩ A(a)), and the impressions where
the two allocations differ (i.e. O(a) − A(a)). At first glance, it would appear
that the efficiency contribution of the overlapping impressions is trivially equal,
and that we need to only worry about the non-overlapping impressions. But
interestingly, because the efficiency contribution of each bidder is the minimum
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over several “types” of value, the efficiency contribution of the same subset
of impressions with identical winning bidders may not be equal, and may in
fact be incomparable, for the two allocations. To overcome this difficulty, we
identify a subset C(a) of constraints, which can be used to characterize both
the contribution to liquid welfare as well as the query-level equilibrium bids for
bidder a. In particular, this subset has the following three properties:

– For a given bidder a, its bid at equilibrium is no less than a particular convex
linear combination of the RHS of bidder a’s constraints indexed by C(a).

ba(i) =
va

i +
∑

c αa
cva

ic∑
c αa

c

=
va

i +
∑

c∈C(a) αa
cva

ic
∑

c∈C(a) αa
c

≥
∑

c∈C(a) αa
cva

ic
∑

c∈C(a) αa
c

Using this bound on bids for each impression we can bound the “portion” of
OPT from O(a) − A(a).

ALG ≥ Total ALG Spend

≥
∑

a∈A2

∑

i∈O(a)∩A(a)

ALG Spend(i)

≥
∑

a∈A2

∑

i∈O(a)−A(a)

ctra
i ba(i)

≥
∑

a∈A2

∑

i∈O(a)−A(a)

ctra
i

∑
c∈C(a) αa

cva
ic

∑
c∈C(a) αa

c

=
∑

a∈A2

∑
c∈C(a) αa

c

∑
i∈O(a)−A(a) ctra

i va
ic

∑
c∈C(a) αa

c

(3)

– A bidder a’s contribution to the welfare at equilibrium is equal to the sum of
its “c-type” values for the impressions it gets at equilibrium for any c ∈ C(a).
This in turn implies that its contribution is also equal to the sum (over its
equilibrium allocation) of any convex linear combination of its c-type values
for c ∈ C(a).

ALG(A2) =
∑

a∈A2

∑
c∈C(a) αa

c (Ba
c +

∑
i∈A(a) ctra

i va
ic)

∑
c∈C(a) αa

c

≥
∑

a∈A2

∑
c∈C(a) αa

c (Ba
c +

∑
i∈O(a)∩A(a) ctra

i va
ic)

∑
c∈C(a) αa

c

(4)

– For a given bidder a, its contribution to global optimal allocation’s welfare is
no more than the sum over its global optimal allocation of any convex linear
combination of its c-type values (over any subset of C including C(a)).

OPT (A2) =
∑

a∈A2

(Ba
c′(a) +

∑

i

xa
i ctra

i va
ic) =

∑

a∈A2

(Ba
c′(a) +

∑

i∈O(a)

ctra
i va

ic)

≤
∑

a∈A2

∑
c∈C(a) αa

c (Ba
c +

∑
i∈O(a) ctra

i va
ic)

∑
c∈C(a) αa

c

(5)
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We now split the right hand side into two parts and then use all the other
inequalities to get the final bound.

OPT (A2) ≤
∑

a∈A2

∑
c∈C(a) αa

c (Ba
c +

∑
i∈O(a)∩A(a) ctra

i va
ic)

∑
c∈C(a) αa

c

+
∑

a∈A2

∑
c∈C(a) αa

c

∑
i∈O(a)−A(a) ctra

i va
ic

∑
c∈C(a) αa

c

≤ALG(A2) + ALG

Where the first inequality is due to 5 and second is due to 3 and 4. Summing
ALG(A2)+ALG+ALG(A1) >= OPT (A1)+OPT (A2) giving 2ALG >= OPT .

5.3 Tight Example for Factor 2

Here we give an example showing that factor 2 is tight. We have two advertisers
A = {a1, a2} and two impressions I = {i1, i2}. ctr is 1 for all ad impression pairs.
Value for advertiser a1 are va1

1 = ε + ε2, va1
2 = 1 − ε and for second advertiser

are va1
2 = 1, va2

2 = 0. We have one constraint (special case of TCPA constraint)
with Ba1

c = Ba2
c = 0 and va

ic = va
i for i ∈ I, a ∈ A.

One can show that α1
c = ε, α2

c = 2
ε2 is a locally optimal bidding strategy. This

gives allocation of both i1 and i2 to a1 giving it liquid welfare of ε+ ε2 +1− ε =
1 + ε2. But globally optimal solution allocates c1 to a2 and c2 to a1 giving it
liquid welfare of 1 − ε + 1 = 2 − ε.

6 Equilibrium

In this section we consider special case when the space of impressions/slots is a
measure space. We further assume that there is no point mass distribution except
a special impression,slot i, s for each advertiser a which has small ε positive value,
0 cost, va

ic = ε and always allocated to advertiser a. Then we show that there is
an equilibrium bidding given by our bidding formula and no advertiser wants to
deviate. We use the special impression to upper bound the dual variables. We
use the no point mass distribution to make sure that slack in each constraint is
a continuous function of the dual variables. Based on these two we can invoke
Brower’s fixed point theorem to show the existence of an equilibrium.

Lemma 2. In any optimal solution to the dual linear program the dual variables
αa

c are bounded by
∫

i,s
ctra

isv
a
i d(i, s)/ε. Further the slack in primal constraint i.e

slacka
c = Ba

c +
∫

i,s
xa

isctr
a
is(v

a
ic − cpca

is)d(i, s) is a continuous function of the

bidding formula va
i +

∑
c αa

cva
ic∑

c αa
c

.
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Proof. We first note that slack in primal constraint being a continuous function
of bidding formula is just a manifestation of assumption that we don’t have
any point mass distribution. Next to prove a upper bound on αa

c we first prove
an upper bound on each δa

i . Note that dual LP objective is lower bounded by
δa
i and primal objective is upper bounded by

∫
i,s

ctra
isv

a
ikd(i, s). Hence we get

δa
i ≤ ∫

i,s
ctra

isv
a
i d(i, s).

Now consider the dual constraint corresponding to the special impression, slot
i, s for advertiser a. Then we know that cpca

is = 0 and va
ic = ε. Then consider the

corresponding dual constraint. δa
i +

∑
c αa

c (cpca
is − va

ic) ≥ va
i . Substituting the

values and rewriting we get
∑

c αa
c ε ≤ δa

i which implies αa
c ≤ δa

i /ε. Now using
the upper bound on δa

i we get the upper bound on αa
c .

We next define a map from αa
c to itself. Define it as follows.

φ(αa
c ) = min

(∫
i,s

ctra
isv

a
is

ε
, αa

c (1 + η)−slacka
c

)

Here 0 < η < 1 is any positive number. Since this map is continuous and
bounded, by Brower’s fixed point theorem we have a fixed point. At fixed point
αa

c > 0 if and only if the constraint is tight. Hence by primal dual complementary
slackness we have that the solution is also locally optimal for each advertiser.
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