
Safe and Nested Subgame Solving for
Imperfect-Information Games∗

Noam Brown
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15217
noamb@cs.cmu.edu

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15217

sandholm@cs.cmu.edu

Abstract

In imperfect-information games, the optimal strategy in a subgame may depend
on the strategy in other, unreached subgames. Thus a subgame cannot be solved
in isolation and must instead consider the strategy for the entire game as a whole,
unlike perfect-information games. Nevertheless, it is possible to first approximate
a solution for the whole game and then improve it by solving individual subgames.
This is referred to as subgame solving. We introduce subgame-solving techniques
that outperform prior methods both in theory and practice. We also show how to
adapt them, and past subgame-solving techniques, to respond to opponent actions
that are outside the original action abstraction; this significantly outperforms the
prior state-of-the-art approach, action translation. Finally, we show that subgame
solving can be repeated as the game progresses down the game tree, leading to far
lower exploitability. These techniques were a key component of Libratus, the first
AI to defeat top humans in heads-up no-limit Texas hold’em poker.

1 Introduction

Imperfect-information games model strategic settings that have hidden information. They have a
myriad of applications including negotiation, auctions, cybersecurity, and physical security.

In perfect-information games, determining the optimal strategy at a decision point only requires
knowledge of the game tree’s current node and the remaining game tree beyond that node (the
subgame rooted at that node). This fact has been leveraged by nearly every AI for perfect-information
games, including AIs that defeated top humans in chess [9] and Go [32]. In checkers, the ability to
decompose the game into smaller independent subgames was even used to solve the entire game [30].
However, it is not possible to determine a subgame’s optimal strategy in an imperfect-information
game using only knowledge of that subgame, because the game tree’s exact node is typically unknown.
Instead, the optimal strategy may depend on the value an opponent could have received in some other,
unreached subgame. Although this is counter-intuitive, we provide a demonstration in Section 2.

Rather than rely on subgame decomposition, past approaches for imperfect-information games
typically solved the game as a whole upfront. For example, heads-up limit Texas hold’em, a relatively
simple form of poker with 1013 decision points, was essentially solved without decomposition [2].
However, this approach cannot extend to larger games, such as heads-up no-limit Texas hold’em—the
primary benchmark in imperfect-information game solving—which has 10161 decision points [18].

∗A version of this paper was posted on the authors’ web pages in 2016, submitted to the AAAI-17 Workshop
on Computer Poker and Imperfect Information Games in October 2016, and published in that workshop on
February 5th, 2017.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

ar
X

iv
:1

70
5.

02
95

5v
3

 [
cs

.A
I]

 1
6

N
ov

 2
01

7

The standard approach to computing strategies in such large games is to first generate an abstraction
of the game, which is a smaller version of the game that retains as much as possible the strategic
characteristics of the original game [27, 29, 28]. For example, a continuous action space might
be discretized. This abstract game is solved and its solution is used when playing the full game
by mapping states in the full game to states in the abstract game. We refer to the solution of an
abstraction (or more generally any approximate solution to a game) as a blueprint strategy.

In heavily abstracted games, a blueprint may be far from the true solution. Subgame solving
attempts to improve upon the blueprint by solving in real time a more fine-grained abstraction for an
encountered subgame, while fitting its solution within the overarching blueprint.

2 Coin Toss

In this section we provide intuition for why an imperfect-information subgame cannot be solved in
isolation. We demonstrate this in a simple game we call Coin Toss, shown in Figure 1a, which will
be used as a running example throughout the paper.

Coin Toss is played between players P1 and P2. The figure shows rewards only for P1; P2 always
receives the negation of P1’s reward. A coin is flipped and lands either Heads or Tails with equal
probability, but only P1 sees the outcome. P1 then chooses between actions “Sell” and “Play.” The
Sell action leads to a subgame whose details are not important, but the expected value (EV) of
choosing the Sell action will be important. (For simplicity, one can equivalently assume in this
section that Sell leads to an immediate terminal reward, where the value depends on whether the
coin landed Heads or Tails). If the coin lands Heads, it is considered lucky and P1 receives an EV of
$0.50 for choosing Sell. On the other hand, if the coin lands Tails, it is considered unlucky and P1

receives an EV of −$0.50 for action Sell. (That is, P1 must on average pay $0.50 to get rid of the
coin). If P1 instead chooses Play, then P2 may guess how the coin landed. If P2 guesses correctly,
then P1 receives a reward of −$1. If P2 guesses incorrectly, then P1 receives $1. P2 may also forfeit,
which should never be chosen but will be relevant in later sections. We wish to determine the optimal
strategy for P2 in the subgame S that occurs after P1 chooses Play, shown in Figure 1a.

Figure 1: (a) The example game of Coin Toss. “C” represents a chance node. S is a Player 2 (P2) subgame.
The dotted line between the two P2 nodes means that P2 cannot distinguish between them. (b) The public game
tree of Coin Toss. The two outcomes of the coin flip are only observed by P1.

Were P2 to always guess Heads, P1 would receive $0.50 for choosing Sell when the coin lands Heads,
and $1 for Play when it lands Tails. This would result in an average of $0.75 for P1. Alternatively,
were P2 to always guess Tails, P1 would receive $1 for choosing Play when the coin lands Heads,
and−$0.50 for choosing Sell when it lands Tails. This would result in an average reward of $0.25 for
P1. However, P2 would do even better by guessing Heads with 25% probability and Tails with 75%
probability. In that case, P1 could only receive $0.50 (on average) by choosing Play when the coin
lands Heads—the same value received for choosing Sell. Similarly, P1 could only receive −$0.50 by
choosing Play when the coin lands Tails, which is the same value received for choosing Sell. This
would yield an average reward of $0 for P1. It is easy to see that this is the best P2 can do, because
P1 can average $0 by always choosing Sell. Therefore, choosing Heads with 25% probability and
Tails with 75% probability is an optimal strategy for P2 in the “Play” subgame.

2

Now suppose the coin is considered lucky if it lands Tails and unlucky if it lands Heads. That is,
the expected reward for selling the coin when it lands Heads is now −$0.50 and when it lands Tails
is now $0.50. It is easy to see that P2’s optimal strategy for the “Play” subgame is now to guess
Heads with 75% probability and Tails with 25% probability. This shows that a player’s optimal
strategy in a subgame can depend on the strategies and outcomes in other parts of the game. Thus,
one cannot solve a subgame using information about that subgame alone. This is the central challenge
of imperfect-information games as opposed to perfect-information games.

3 Notation and Background

This paper focuses on two-player zero-sum games. In a two-player zero-sum extensive-form game
there are two players, P = {1, 2}. H is the set of all possible nodes, represented as a sequence of
actions. A(h) is the actions available in a node and P (h) ∈ P ∪ c is the player who acts at that
node, where c denotes chance. Chance plays an action a ∈ A(h) with a fixed probability. If action
a ∈ A(h) leads from h to h′, then we write h · a = h′. If a sequence of actions leads from h to h′,
then we write h @ h′. The set of nodes Z ⊆ H are terminal nodes. For each player i ∈ P , there is a
payoff function ui : Z → < where u1 = −u2.

Imperfect information is represented by information sets (infosets). Every node h ∈ H belongs
to exactly one infoset for each player. For any infoset Ii, nodes h, h′ ∈ Ii are indistinguishable to
player i. Thus the same player must act at all the nodes in an infoset, and the same actions must be
available. Let P (Ii) and A(Ii) be such that all h ∈ Ii, P (Ii) = P (h) and A(Ii) = A(h).

A strategy σi(Ii) is a probability vector over A(Ii) for infosets where P (Ii) = i. The probability of
action a is denoted by σi(Ii, a). For all h ∈ Ii, σi(h) = σi(Ii). A full-game strategy σi ∈ Σi defines
a strategy for each player i infoset. A strategy profile σ is a tuple of strategies, one for each player.
The expected payoff for player i if all players play the strategy profile 〈σi, σ−i〉 is ui(σi, σ−i), where
σ−i denotes the strategies in σ of all players other than i.

Let πσ(h) =
∏
h′·avh σP (h′)(h

′, a) denote the probability of reaching h if all players play according
to σ. πσi (h) is the contribution of player i to this probability (that is, the probability of reaching h if
chance and all players other than i always chose actions leading to h). πσ−i(h) is the contribution of
all players, and chance, other than i. We similarly define πσ(h, h′) is the probability of reaching h′
given that h has been reached, and 0 if h 6@ h′. This papers focuses on perfect-recall games, where a
player never forgets past information. Thus, for every Ii, ∀h, h′ ∈ Ii, πσi (h) = πσi (h′). We define
πσi (Ii) = πσi (h) for h ∈ Ii. Also, I ′i @ Ii if for some h′ ∈ I ′i and some h ∈ Ii, h′ @ h. Similarly,
I ′i · a @ Ii if h′ · a @ h.

A Nash equilibrium [25] is a strategy profile σ∗ where no player can improve by shifting to a different
strategy, so σ∗ satisfies ∀i, ui(σ∗i , σ∗−i) = maxσ′i∈Σi ui(σ

′
i, σ
∗
−i). An ε-Nash equilibrium is a strategy

profile σ∗ such that ∀i, ui(σ∗i , σ∗−i) + ε ≥ maxσ′i∈Σi ui(σ
′
i, σ
∗
−i). A best response BR(σ−i) is a

strategy for player i that is optimal against σ−i. Formally, BR(σ−i) satisfies ui(BR(σ−i), σ−i) =
maxσ′i∈Σi ui(σ

′
i, σ−i). In a two-player zero-sum game, the exploitability exp(σi) of a strategy σi is

how much worse σi does against an opponent best response than a Nash equilibrium strategy would
do. Formally, exploitability of σi is ui(σ∗)− ui(σi, BR(σi)), where σ∗ is a Nash equilibrium.

The expected value of a node h when players play according to σ is vσi (h) =
∑
z∈Z

(
πσ(h, z)ui(z)

)
.

An infoset’s value is the weighted average of the values of the nodes in the infoset, where a node

is weighed by the player’s belief that she is in that node. Formally, vσi (Ii) =
∑
h∈Ii

(
πσ−i(h)vσi (h)

)
∑
h∈Ii

πσ−i(h)

and vσi (Ii, a) =
∑
h∈Ii

(
πσ−i(h)vσi (h·a)

)
∑
h∈Ii

πσ−i(h) . A counterfactual best response [24] CBR(σ−i) is a best

response that also maximizes value in unreached infosets. Specifically, a counterfactual best re-
sponse is a best response σi with the additional condition that if σi(Ii, a) > 0 then vσi (Ii, a) =
maxa′ v

σ
i (Ii, a

′). We further define counterfactual best response value CBV σ−i(Ii) as the value
player i expects to achieve by playing according to CBR(σ−i), having already reached infoset Ii.
Formally, CBV σ−i(Ii) = v

〈CBR(σ−i),σ−i〉
i (Ii) and CBV σ−i(Ii, a) = v

〈CBR(σ−i),σ−i〉
i (Ii, a).

An imperfect-information subgame, which we refer to simply as a subgame in this paper, can in
most cases (but not all) be described as including all nodes which share prior public actions (that is,

3

actions viewable to both players). In poker, for example, a subgame is uniquely defined by a sequence
of bets and public board cards. Figure 1b shows the public game tree of Coin Toss. Formally, an
imperfect-information subgame is a set of nodes S ⊆ H such that for all h ∈ S, if h @ h′, then
h′ ∈ S, and for all h ∈ S and all i ∈ P , if h′ ∈ Ii(h) then h′ ∈ S. Define Stop as the set of
earliest-reachable nodes in S. That is, h ∈ Stop if h ∈ S and h′ 6∈ S for any h′ @ h.

4 Prior Approaches to Subgame Solving

This section reviews prior techniques for subgame solving in imperfect-information games, which we
build upon. Throughout this section, we refer to the Coin Toss game shown in Figure 1a.

As discussed in Section 1, a standard approach to dealing with large imperfect-information games is
to solve an abstraction of the game. The abstract solution is a (probably suboptimal) strategy profile
in the full game. We refer to this full-game strategy profile as the blueprint. The goal of subgame
solving is to improve upon the blueprint by changing the strategy only in a subgame. While the
blueprint is frequently a Nash equilibrium (or approximate Nash equilibrium) in some abstraction of
the full game, our techniques do not assume this. The blueprint can in fact be any arbitrary strategy
in the full game.

Figure 2: The blueprint we refer to in the game of Coin Toss. The Sell action leads to a subgame that is not
displayed. Probabilities are shown for all actions. The dotted line means the two P2 nodes share an infoset. The
EV of each P1 action is also shown.

Assume that a blueprint σ (shown in Figure 2) has already been computed for Coin Toss in which
P1 chooses Play 3

4 of the time with Heads and 1
2 of the time with Tails, and P2 chooses Heads 1

2

of the time, Tails 1
4 of the time, and Forfeit 1

4 of the time after P1 chooses Play. 2 The details of
the blueprint in the Sell subgame are not relevant in this section, but the EV for choosing the Sell
action is relevant. We assume that if P1 chose the Sell action and played optimally thereafter, then
she would receive an expected payoff of 0.5 if the coin is Heads, and −0.5 if the coin is Tails. We
will attempt to improve P2’s strategy in the subgame S that follows P1 choosing Play.

4.1 Unsafe Subgame Solving

We first review the most intuitive form of subgame solving, which we refer to as Unsafe subgame
solving [1, 14, 15, 12]. This form of subgame solving assumes both players played according to the
blueprint prior to reaching the subgame. That defines a probability distribution over the nodes at the
root of the subgame S, representing the probability that the true game state matches that node. A
strategy for the subgame is then calculated which assumes that this distribution is correct.

In all subgame solving algorithms, an augmented subgame containing S and a few additional nodes
is solved to determine the strategy for S. Applying Unsafe subgame solving to the blueprint in Coin
Toss (after P1 chooses Play) means solving the augmented subgame shown in Figure 3a.

Specifically, the augmented subgame consists of only an initial chance node and S. The initial chance
node reaches h ∈ Stop with probability πσ(h)∑

h′∈Stop
πσ(h′) . The augmented subgame is solved and its

strategy for P2 is used in S rather than the blueprint strategy.
2In many large games the blueprint is far from optimal either because the equilibrium-finding algorithm

did not sufficiently converge or because the game was too large and had to be abstracted. Clearly the example
blueprint shown here could be trivially improved; we use it for simplicity of exposition.

4

(a) Unsafe subgame solving (b) Resolve subgame solving

Figure 3: The augmented subgames solved to find a P2 strategy in the Play subgame of Coin Toss.

Unsafe subgame solving lacks theoretical solution quality guarantees and there are many situations
where it performs extremely poorly. Indeed, if it were applied to the blueprint of Coin Toss then
P2 would always choose Heads—which P1 could exploit severely by only choosing Play with Tails.
Despite the lack of theoretical guarantees and potentially bad performance, Unsafe subgame solving
is simple and can sometimes produce low-exploitability strategies, as we show later.

We now move to discussing safe subgame-solving techniques, that is, ones that ensure that the
exploitability of the strategy is no higher than that of the blueprint strategy.

4.2 Subgame Resolving

In subgame Resolving [8], a safe strategy is computed for P2 in the subgame by solving the augmented
subgame shown in Figure 3b, producing an equilibrium strategy σS . This augmented subgame differs
from Unsafe subgame solving by giving P1 the option to “opt out” from entering S and instead
receive the EV of playing optimally against P2’s blueprint strategy in S.

Specifically, the augmented subgame for Resolving differs from unsafe subgame solving as follows.
For each htop ∈ Stop we insert a new P1 node hr, which exists only in the augmented subgame,
between the initial chance node and htop. The set of these hr nodes is Sr. The initial chance node
connects to each node hr ∈ Sr in proportion to the probability that player P1 could reach htop if
P1 tried to do so (that is, in proportion to πσ−1(htop)). At each node hr ∈ Sr, P1 has two possible
actions. Action a′S leads to htop, while action a′T leads to a terminal payoff that awards the value
of playing optimally against P2’s blueprint strategy, which is CBV σ2(I1(htop)). In the blueprint of
Coin Toss, P1 choosing Play after the coin lands Heads results in an EV of 0, and 1

2 if the coin is
Tails. Therefore, a′T leads to a terminal payoff of 0 for Heads and 1

2 for Tails. After the equilibrium
strategy σS is computed in the augmented subgame, P2 plays according to the computed subgame
strategy σS2 rather than the blueprint strategy when in S. The P1 strategy σS1 is not used.

Clearly P1 cannot do worse than always picking action a′T (which awards the highest EV P1 could
achieve against P2’s blueprint). But P1 also cannot do better than always picking a′T , because P2

could simply play according to the blueprint in S, which means action a′S would give the same EV to
P1 as action a′T (if P1 played optimally in S). In this way, the strategy for P2 in S is pressured to be
no worse than that of the blueprint. In Coin Toss, if P2 were to always choose Heads (as was the case
in Unsafe subgame solving), then P1 would always choose a′T with Heads and a′S with Tails.

Resolving guarantees that P2’s exploitability will be no higher than the blueprint’s (and may be
better). However, it may miss opportunities for improvement. For example, if we apply Resolving to
the example blueprint in Coin Toss, one solution to the augmented subgame is the blueprint itself, so
P2 may choose Forfeit 25% of the time even though Heads and Tails dominate that action. Indeed,
the original purpose of Resolving was not to improve upon a blueprint strategy in a subgame, but
rather to compactly store it by keeping only the EV at the root of the subgame and then reconstructing
the strategy in real time when needed rather than storing the whole subgame strategy.

Maxmargin subgame solving [24], discussed in Appendix A, can improve performance by defin-
ing a margin MσS (I1) = CBV σ2(I1) − CBV σ

S
2 (I1) for each I1 ∈ Stop and maximizing

5

minI1∈Stop M
σS (I1). Resolving only makes all margins nonnegative. However, Maxmargin does

worse in practice when using estimates of equilibrium values as discussed in Section 6.

5 Reach Subgame Solving

All of the subgame-solving techniques described in Section 4 only consider the target subgame in
isolation, which can lead to suboptimal strategies. For example, Maxmargin solving applied to S
in Coin Toss results in P2 choosing Heads with probability 5

8 and Tails with 3
8 in S. This results in

P1 receiving an EV of − 1
4 by choosing Play in the Heads state, and an EV of 1

4 in the Tails state.
However, P1 could simply always choose Sell in the Heads state (earning an EV of 0.5) and Play in
the Tails state and receive an EV of 3

8 for the entire game. In this section we introduce Reach subgame
solving, an improvement to past subgame-solving techniques that considers what the opponent could
have alternatively received from other subgames.3 For example, a better strategy for P2 would be
to choose Heads with probability 3

4 and Tails with probability 1
4 . Then P1 is indifferent between

choosing Sell and Play in both cases and overall receives an expected payoff of 0 for the whole game.

However, that strategy is only optimal if P1 would indeed achieve an EV of 0.5 for choosing Sell
in the Heads state and −0.5 in the Tails state. That would be the case if P2 played according to the
blueprint in the Sell subgame (which is not shown), but in reality we would apply subgame solving to
the Sell subgame if the Sell action were taken, which would change P2’s strategy there and therefore
P1’s EVs. Applying subgame solving to any subgame encountered during play is equivalent to
applying it to all subgames independently. Thus, we must consider that the EVs from other subgames
may differ from what the blueprint says because subgame solving would be applied to them as well.

Figure 4: Left: A modified game of Coin Toss with two subgames. The nodes C1 and C2 are public chance
nodes whose outcomes are seen by both P1 and P2. Right: An augmented subgame for one of the subgames
according to Reach subgame solving. If only one of the subgames is being solved, then the alternative payoff
for Heads can be at most 1. However, if both are solved independently, then the gift must be split among the
subgames and must sum to at most 1. For example, the alternative payoff in both subgames can be 0.5.

As an example of this issue, consider the game shown in Figure 4 which contains two identical
subgames S1 and S2 where the blueprint has P2 pick Heads and Tails with 50% probability. The Sell
action leads to an EV of 0.5 from the Heads state, while Play leads to an EV of 0. If we were to solve
just S1, then P2 could afford to always choose Tails in S1, thereby letting P1 achieve an EV of 1
for reaching that subgame from Heads because, due to the chance node C1, S1 is only reached with
50% probability. Thus, P1’s EV for choosing Play would be 0.5 from Heads and −0.5 from Tails,
which is optimal. We can achieve this strategy in S1 by solving an augmented subgame in which the
alternative payoff for Heads is 1. In that augmented subgame, P2 always choosing Tails would be a
solution (though not the only solution).

However, if the same reasoning were applied independently to S2 as well, then P2 might always
choose Tails in both subgames and P1’s EV for choosing Play from Heads would become 1 while the
EV for Sell would only be 0.5. Instead, we could allow P1 to achieve an EV of 0.5 for reaching each
subgame from Heads (by setting the alternative payoff for Heads to 0.5). In that case, P1’s overall
EV for choosing Play could only increase to 0.5, even if both S1 and S2 were solved independently.

3Other subgame-solving methods have also considered the cost of reaching a subgame [34, 17]. However,
those approaches are not correct in theory when applied in real time to any subgame reached during play.

6

We capture this intuition by considering for each I1 ∈ Stop all the infosets and actions I ′1 · a′ @ I1
that P1 would have taken along the path to I1. If, at some I ′1 · a′ @ I1 where P1 acted, there was a
different action a∗ ∈ A(I ′1) that leads to a higher EV, then P1 would have taken a suboptimal action
if they reached I1. The difference in value between a∗ and a′ is referred to as a gift. We can afford
to let P1’s value for I1 increase beyond the blueprint value (and in the process lower P1’s value in
some other infoset in Stop), so long as the increase to I1’s value is small enough that choosing actions
leading to I1 is still suboptimal for P1. Critically, we must ensure that the increase in value is small
enough even when the potential increase across all subgames is summed together, as in Figure 4.4

A complicating factor is that gifts we assumed were present may actually not exist. For example, in
Coin Toss, suppose applying subgame solving to the Sell subgame results in P1’s value for Sell from
the Heads state decreasing from 0.5 to 0.25. If we independently solve the Play subgame, we have
no way of knowing that P1’s value for Sell is lower than the blueprint suggested, so we may still
assume there is a gift of 0.5 from the Heads state based on the blueprint. Thus, in order to guarantee a
theoretical result on exploitability that is as strong as possible, we use in our theory and experiments
a lower bound on what gifts could be after subgame solving was applied to all other subgames.

Formally, let σ2 be a P2 blueprint and let σ−S2 be the P2 strategy that results from applying sub-
game solving independently to a set of disjoint subgames other than S. Since we do not want
to compute σ−S2 in order to apply subgame solving to S, let bgσ

−S
2 (I ′1, a

′)c be a lower bound of
CBV σ

−S
2 (I ′1)− CBV σ

−S
2 (I ′1, a

′) that does not require knowledge of σ−S2 . In our experiments we
use bgσ

−S
2 (I ′1, a

′)c = maxa∈Az(I′1)∪{a′} CBV
σ2(I ′1, a) − CBV σ2(I ′1, a

′) where Az(I ′1) ⊆ A(I ′1)
is the set of actions leading immediately to terminal nodes. Reach subgame solving modifies the
augmented subgame in Resolving and Maxmargin by increasing the alternative payoff for infoset
I1 ∈ Stop by

∑
I′1·a′vI1|P (I′1)=P1

bgσ
−S
2 (I ′1, a

′)c. Formally, we define a reach margin as

MσS

r (I1) = MσS (I1) +
∑

I′1·a′vI1|P (I′1)=P1

bgσ
−S
2 (I ′1, a

′)c (1)

This margin is larger than or equal to the one for Maxmargin, because bgσ
−S
2 (I ′, a′)c is nonnegative.

We refer to the improved algorithms as Reach-Resolve and Reach-Maxmargin.

Intuitively, the alternative payoff in an augmented subgame determines how important it is that P2

“defend” against that P1 infoset. If the alternative payoff is increased, then P1 is more likely to choose
the alternative payoff rather than enter the subgame, so P2 can instead focus on lowering the value of
other P1 infosets in Stop.

Using a lower bound on gifts is not necessary to guarantee safety. So long as we use a gift value
gσ
′
(I ′1, a

′) ≤ CBV σ2(I ′1) − CBV σ2(I ′1, a
′), the resulting strategy will be safe. However, using

a lower bound further guarantees a reduction to exploitability when a P1 best response reaches
with positive probability an infoset I1 ∈ Stop that has positive margin, as proven in Theorem 1. In
practice, it may be best to use an accurate estimate of gifts. One option is to use ĝσ

−S
2 (I ′1, a

′) =
˜CBV

σ2
(I ′1)− ˜CBV

σ2
(I ′1, a

′) in place of bgσ
−S
2 (I ′1, a

′)c, where ˜CBV
σ2 is the closest P1 can get to

the value of a counterfactual best response while P1 is constrained to playing within the abstraction
that generated the blueprint. Using estimates is covered in more detail in Section 6.

Theorem 1 shows that when subgames are solved independently and using lower bounds on gifts,
Reach-Maxmargin solving has exploitability lower than or equal to past safe techniques. The theorem
statement is similar to that of Maxmargin [24], but the margins are now larger (or equal) in size.

Theorem 1. Given a strategy σ2 in a two-player zero-sum game, a set of disjoint subgames S,
and a strategy σS2 for each subgame S ∈ S produced via Reach-Maxmargin solving using lower
bounds for gifts, let σ′2 be the strategy that plays according to σS2 for each subgame S ∈ S, and σ2

4In this paper and in our experiments, we allow any infoset that descends from a gift to increase by the size
of the gift (e.g., in Figure 4 the gift from Heads is 0.5, so we allow P1’s value for Heads in both S1 and S2

to increase by 0.5). However, any division of the gift among subgames is acceptable so long as the potential
increase across all subgames (multiplied by the probability of P1 reaching that subgame) does not exceed the
original gift. For example in Figure 4 if we only apply Reach subgame solving to S1, then we could allow the
Heads state in S1 to increase by 1 rather than just by 0.5. In practice, some divisions may do better than others.
The division we use in this paper (applying gifts equally to all subgames) did well in practice.

7

elsewhere. Moreover, let σ−S2 be the strategy that plays according to σ′2 everywhere except for P2

nodes in S, where it instead plays according to σ2. If πBR(σ′2)
1 (I1) > 0 for some I1 ∈ Stop, then

exp(σ′2) ≤ exp(σ−S2)−
∑
h∈I1 π

σ2
−1(h)MσS

r (I1).

So far the described techniques have guaranteed a reduction in exploitability over the blueprint by
setting the value of a′T equal to the value of P1 playing optimally to P2’s blueprint. Relaxing this
guarantee by instead setting the value of a′T equal to an estimate of P1’s value when both players play
optimally leads to far lower exploitability in practice. We discuss this approach in the next section.

6 Estimates for Alternative Payoffs

In this section we consider the case where we have a good estimate of what the values of subgames
would look like in a Nash equilibrium. Unlike previous sections, exploitability might be higher than
the blueprint when using this method; the solution quality ultimately depends on the accuracy of the
estimates used. In practice this approach leads to significantly lower exploitability.

When solving multiple P2 subgames, there is a minimally-exploitable strategy σ∗2 that could, in theory,
be computed by changing only the strategies in the subgames. (σ∗2 may not be a Nash equilibrium
because P2’s strategy outside the subgames is fixed, but it is the closest that can be achieved by
changing the strategy only in the subgames). However, σ∗2 can only be guaranteed to be produced
by solving all the subgames together, because the optimal strategy in one subgame depends on the
optimal strategy in other subgames.

Still, suppose that we know CBV σ
∗
2 (I1) for every infoset I1 ∈ Stop for every subgame S. Let Ir,1

be the infoset in Sr that leads to I1. By setting the P1 alternative payoff for Ir,1 to v(Ir,1, a
′
T) =

CBV σ
∗
2 (I1), safe subgame solving guarantees a strategy will be produced with exploitability no

worse than σ∗2 . Thus, achieving a strategy equivalent to σ∗2 does not require knowledge of σ∗2 ; rather,
it only requires knowledge of CBV σ

∗
2 (I1) for infosets I1 in the top of the subgames.

While we do not know CBV σ
∗
2 (I1) exactly without knowing σ∗2 itself, we may nevertheless be able

to produce (or learn) good estimates of CBV σ
∗
2 (I1). For example, in Section 8 we compute the

solution to the game of No-Limit Flop Hold’em (NLFH), and find that in perfect play P2 can expect
to win about 37 mbb/h5 (that is, if P1 plays perfectly against the computed P2 strategy, then P1 earns
−37; if P2 plays perfectly against the computed P1 strategy, then P2 earns 37). An abstraction of the
game which is only 0.02% of the size of the full game produces a P1 strategy that can be beaten by
112 mbb/h, and a P2 strategy that can be beaten by 21 mbb/h. Still, the abstract strategy estimates
that at equilibrium, P2 can expect to win 35 mbb/h. So even though the abstraction produces a very
poor estimate of the strategy σ∗, it produces a good estimate of the value of σ∗. In our experiments,
we estimate CBV σ

∗
2 (I1) by calculating a P1 counterfactual best response within the abstract game

to P2’s blueprint. We refer to this strategy as ˜CBR(σ2) and its value in an infoset I1 as ˜CBV
σ2

(I1).
We then use ˜CBV

σ2
(I1) as the alternative payoff of I1 in an augmented subgame. In other words,

rather than calculate a P1 counterfactual best response in the full game to P2’s blueprint strategy
(which would be CBR(σ2)), we instead calculate P1’s counterfactual best response where P1 is
constrained by the abstraction.

If the blueprint was produced by conducting T iterations of CFR in an abstract game, then one could
instead simply use the final iteration’s strategy σT1 , as this converges to a counterfactual best response
within the abstract game. This is what we use in our experiments in this paper.

Theorem 2 proves that if we use estimates of CBV σ
∗
2 (I1) as the alternative payoffs in Maxmargin

subgame solving, then we can bound exploitability by the distance of the estimates from the true
values. This is in contrast to the previous algorithms which guaranteed exploitability no worse than
the blueprint.

Theorem 2. Let S be a set of disjoint subgames being solved in a game with no private actions. Let
σ be a blueprint and let σ∗2 be a minimally-exploitable P2 strategy that differs from σ2 only in S. Let

5In poker, the performance of one strategy against another depends on how much money is being wagered.
For this reason, expected value and exploitability are measured in milli big blinds per hand (mbb/h). A big blind
is the amount of money one of the players is required to put into the pot at the beginning of each hand.

8

∆ = maxS∈S,I1∈Stop |CBV σ
∗
2 (I1)− CBV σ2(I1)|. Applying Maxmargin solving to each subgame

using σ as the blueprint produces a P2 strategy with exploitability no higher than exp(σ∗2) + 2∆.

Using estimates of the values of σ∗ tends to be do better than the theoretically safe options described
in Section 4.6

Although Theorem 2 uses Maxmargin in the proof, in practice Resolve does far better with estimates
than Maxmargin. Additionally, the theorem easily extends to Reach-Maxmargin as well, and Reach-
Resolve does better than Resolve regardless of whether estimates are used.

Section B.1 discusses an improvement, which we refer to as Distributional alternative payoffs, that
leads to even better performance by making the algorithm more robust to errors in the blueprint
estimates.

7 Nested Subgame Solving

As we have discussed, large games must be abstracted to reduce the game to a tractable size. This is
particularly common in games with large or continuous action spaces. Typically the action space is
discretized by action abstraction so that only a few actions are included in the abstraction. While
we might limit ourselves to the actions we included in the abstraction, an opponent might choose
actions that are not in the abstraction. In that case, the off-tree action can be mapped to an action that
is in the abstraction, and the strategy from that in-abstraction action can be used. For example, in an
auction game we might include a bid of $100 in our abstraction. If a player bids $101, we simply
treat that as a bid of $100. This is referred to as action translation [16, 31, 10]. Action translation is
the state-of-the-art prior approach to dealing with this issue. It has been used, for example, by all the
leading competitors in the Annual Computer Poker Competition (ACPC).

In this section, we develop techniques for applying subgame solving to calculate responses to
opponent off-tree actions, thereby obviating the need for action translation. That is, rather than simply
treat a bid of $101 as $100, we calculate in real time a unique response to the bid of $101. This can
also be done in a nested fashion in response to subsequent opponent off-tree actions. We present two
methods that dramatically outperform the leading action translation technique. Additionally, these
techniques can be used to solve finer-grained models as play progresses down the game tree. For
exposition, we assume that P2 wishes to respond to P1 choosing an off-tree action.

We refer to the first method as the inexpensive method.7 When P1 chooses an off-tree action a,
a subgame S is generated following that action such that for any infoset I1 that P1 might be in,
I1 · a ∈ Stop. This subgame may itself be an abstraction. A solution σS is computed via subgame
solving, and σS is combined with σ to form a new blueprint σ′ in the expanded abstraction that now
includes action a. The process repeats whenever P1 again chooses an off-tree action.

To conduct safe subgame solving in response to off-tree action a, we could calculate CBV σ2(I1, a)
by defining, via action translation, a P2 blueprint following a and best responding to it [5]. However,
that could be computationally expensive and would likely perform poorly in practice because, as
we show later, action translation is highly exploitable. Instead, we relax the guarantee of safety and
use ˜CBV

σ2
(I1) for the alternative payoff, where ˜CBV

σ2
(I1) is the value in I1 of P1 playing as

close to optimal as possible while constrained to playing in the blueprint abstraction (which excludes
action a). In this case, exploitability depends on how well ˜CBV

σ2
(I1) approximates CBV σ

∗
2 (I1),

where σ∗2 is an optimal P2 strategy (see Section 6).8 In general, we find that only a small number
of near-optimal actions need to be included in the blueprint abstraction for ˜CBV

σ2
(I1) to be close

to CBV σ
∗
2 (I1). We can then approximate a near-optimal response to any opponent action. This is

particularly useful in very large or continuous action spaces.

The “inexpensive” approach cannot be combined with Unsafe subgame solving because the probability
of reaching an action outside of a player’s abstraction is undefined. Nevertheless, a similar approach

6It is also possible to combine the safety of past approaches with some of the better performance of using
estimates by adding the original Resolve conditions as additional constraints.

7Following our study, the AI DeepStack used a technique similar to this form of nested subgame solving [23].
8We estimate CBV σ∗2 (I1) rather than CBV σ∗2 (I1, a) because CBV σ∗2 (I1)− CBV σ∗2 (I1, a) is a gift that

may be added to the alternative payoff anyway.

9

is possible with Unsafe subgame solving (as well as all the other subgame-solving techniques) by
starting the subgame solving at h rather than at h · a. In other words, if action a taken in node h is
not in the abstraction, then Unsafe subgame solving is conducted in the smallest subgame containing
h (and action a is added to that abstraction). This increases the size of the subgame compared to the
inexpensive method because a strategy must be recomputed for every action a′ ∈ A(h) in addition to
a. For example, if an off-tree action is chosen by the opponent as the first action in the game, then the
strategy for the entire game must be recomputed. We therefore call this method the expensive method.
We present experiments with both methods.

8 Experiments

Our experiments were conducted on heads-up no-limit Texas hold’em, as well as two smaller-scale
poker games we call No-Limit Flop Hold’em (NLFH) and No-Limit Turn Hold’em (NLTH). The
description for these games can be found in Appendix E. For equilibrium finding, we used CFR+ [33].

Our first experiment compares the performance of the subgame-solving techniques when applied
to information abstraction (which is card abstraction in the case of poker). Specifically, we solve
NLFH with no information abstraction on the preflop. On the flop, there are 1,286,792 infosets for
each betting sequence; the abstraction buckets them into 200, 2,000, or 30,000 abstract ones (using a
leading information abstraction algorithm [11]). We then apply subgame solving immediately after
the flop community cards are dealt.

We experiment with two versions of the game, one small and one large, which include only a few of
the available actions in each infoset. We also experimented on abstractions of NLTH. In that case, we
solve NLTH with no information abstraction on the preflop or flop. On the turn, there are 55,190,538
infosets for each betting sequence; the abstraction buckets them into 200, 2,000, or 20,000 abstract
ones. We apply subgame solving immediately after the turn community card is dealt.

Tables 1, 2, and 3 show the performance of each technique. In all our experiments, exploitability is
measured in the standard units used in this field: milli big blinds per hand (mbb/h).

Small Flop Hold’em Flop Buckets: 200 2,000 30,000
Trunk Strategy 88.69 37.374 9.128
Unsafe 14.68 3.958 0.5514
Resolve 60.16 17.79 5.407
Maxmargin 30.05 13.99 4.343
Reach-Maxmargin 29.88 13.90 4.147
Reach-Maxmargin (not split) 24.87 9.807 2.588
Estimate 11.66 6.261 2.423
Estimate + Distributional 10.44 6.245 3.430
Reach-Estimate + Distributional 10.21 5.798 2.258
Reach-Estimate + Distributional (not split) 9.560 4.924 1.733

Table 1: Exploitability (evaluated in the game with no information abstraction) of subgame-solving
in small flop Texas hold’em.

Large Flop Hold’em Flop Buckets: 200 2,000 30,000
Trunk Strategy 283.7 165.2 41.41
Unsafe 65.59 38.22 396.8
Resolve 179.6 101.7 23.11
Maxmargin 134.7 77.89 19.50
Reach-Maxmargin 134.0 72.22 18.80
Reach-Maxmargin (not split) 130.3 66.79 16.41
Estimate 52.62 41.93 30.09
Estimate + Distributional 49.56 38.98 10.54
Reach-Estimate + Distributional 49.33 38.52 9.840
Reach-Estimate + Distributional (not split) 49.13 37.22 8.777

Table 2: Exploitability (evaluated in the game with no information abstraction) of subgame-solving
in large flop Texas hold’em.

10

Turn Hold’em Turn Buckets: 200 2,000 20,000
Trunk Strategy 684.6 465.1 345.5
Unsafe 130.4 85.95 79.34
Resolve 454.9 321.5 251.8
Maxmargin 427.6 299.6 234.4
Reach-Maxmargin 424.4 298.3 233.5
Reach-Maxmargin (not split) 333.4 229.4 175.5
Estimate 120.6 89.43 76.44
Estimate + Distributional 119.4 87.83 74.35
Reach-Estimate + Distributional 116.8 85.80 72.59
Reach-Estimate + Distributional (not split) 113.3 83.24 70.68

Table 3: Exploitability (evaluated in the game with no information abstraction) of subgame-solving
in turn Texas hold’em.

In the above experiments, Estimate is the technique introduced in Section 6 (added on top of
Resolving) and Distributional is the technique introduced in Appendix B.1. We use a normal
distribution in the Distributional subgame solving experiments, with standard deviation determined
by the heuristic presented in Appendix B.1.

Since subgame solving begins immediately after a chance node with an extremely high branching
factor (1, 755 in NLFH), the gifts for the Reach algorithms are divided among subgames inefficiently.
Many subgames do not use the gifts at all, while others could make use of more. The result is that
the theoretically safe version of Reach allocates gifts very conservatively. In the experiments we
show results both for the theoretically safe splitting of gifts, as well as a more aggressive version
where gifts are scaled up by the branching factor of the chance node (1, 755). This weakens the
theoretical guarantees of the algorithm, but in general did better than splitting gifts in a theoretically
correct manner. However, this is not universally true. Appendix D shows that in at least one case,
exploitability increased when gifts were scaled up too aggressively. In all cases, using Reach subgame
solving in at least the theoretical safe method led to lower exploitability.

Despite lacking theoretical guarantees, Unsafe subgame solving did surprisingly well in most games.
However, it did substantially worse in Large NLFH with 30,000 buckets. This exemplifies its
variability. Among the safe methods, all of the changes we introduce show improvement over
past techniques. The Reach-Estimate + Distributional algorithm generally resulted in the lowest
exploitability among the various choices, and in most cases beat Unsafe subgame solving.

In all but one case, using estimated values lowered exploitability more than Maxmargin and Re-
solve subgame solving. Also, in all but one case using distributional alternative payoffs lowered
exploitability.

The second experiment evaluates nested subgame solving, and compares it to action translation. In
order to also evaluate action translation, in this experiment, we create an NLFH game that includes 3
bet sizes at every point in the game tree (0.5, 0.75, and 1.0 times the size of the pot); a player can also
decide not to bet. Only one bet (i.e., no raises) is allowed on the preflop, and three bets are allowed on
the flop. There is no information abstraction anywhere in the game. We also created a second, smaller
abstraction of the game in which there is still no information abstraction, but the 0.75× pot bet is
never available. We calculate the exploitability of one player using the smaller abstraction, while
the other player uses the larger abstraction. Whenever the large-abstraction player chooses a 0.75×
pot bet, the small-abstraction player generates and solves a subgame for the remainder of the game
(which again does not include any subsequent 0.75× pot bets) using the nested subgame-solving
techniques described above. This subgame strategy is then used as long as the large-abstraction player
plays within the small abstraction, but if she chooses the 0.75× pot bet again later, then the subgame
solving is used again, and so on.

Table 4 shows that all the subgame-solving techniques substantially outperform action translation.
Resolve, Maxmargin, and Reach-Maxmargin use inexpensive nested subgame solving, while Unsafe
and “Reach-Maxmargin (expensive)” use the expensive approach. In all cases, we used estimates for
the alternative payoff as described in Section 7. We did not test distributional alternative payoffs in
this experiment, since the calculated best response values are likely quite accurate. Reach-Maxmargin
performed the best, outperforming Maxmargin and Unsafe subgame solving. These results suggest

11

that nested subgame solving is preferable to action translation (if there is sufficient time to solve the
subgame).

mbb/h
Randomized Pseudo-Harmonic Mapping 1,465
Resolve 150.2
Reach-Maxmargin (Expensive) 149.2
Unsafe (Expensive) 148.3
Maxmargin 122.0
Reach-Maxmargin 119.1

Table 4: Exploitability of the various subgame-solving techniques in nested subgame solving. The performance
of the pseudo-harmonic action translation is also shown.

We used the techniques presented in this paper in our AI Libratus, which competed against four top
human specialists in heads-up no-limit Texas hold’em in the January 2017 Brains vs. AI competition.
Libratus was constructed by first solving an abstraction of the game via a new variant of Monte
Carlo CFR [21] that prunes negative-regret actions [4, 6, 7]. Libratus applied nested subgame solving
(solved with CFR+ [33]) upon reaching the third betting round, and in response to every subsequent
opponent bet thereafter. This allowed Libratus to avoid information abstraction during play, and
leverage nested subgame solving’s far lower exploitability in response to opponent off-tree actions.

No-limit Texas hold’em is the most popular form of poker in the world and has been the primary
benchmark challenge for AI in imperfect-information games. The competition was played over
the course of 20 days, and involved 120,000 hands of poker. A prize pool of $200,000 was split
among the four humans based on their performance against the AI to incentivize strong play. The AI
decisively defeated the team of human players by a margin of 147 mbb / hand, with 99.98 statistical
significance (see Figure 5). This was the first, and so far only, time an AI defeated top humans in
no-limit poker.

Figure 5: Libratus’s performance over the course of the 2017 Brains vs AI competition.

9 Conclusion

We introduced a subgame-solving technique for imperfect-information games that has stronger
theoretical guarantees and better practical performance than prior subgame-solving methods. We
presented results on exploitability of both safe and unsafe subgame-solving techniques. We also
introduced a method for nested subgame solving in response to the opponent’s off-tree actions, and
demonstrated that this leads to dramatically better performance than the usual approach of action
translation. This is, to our knowledge, the first time that exploitability of subgame-solving techniques
has been measured in large games.

Finally, we demonstrated the effectiveness of these techniques in practice in heads-up no-limit Texas
Hold’em poker, the main benchmark challenge for AI in imperfect-information games. We developed
the first AI to reach the milestone of defeating top humans in heads-up no-limit Texas Hold’em.

12

10 Acknowledgments

This material is based on work supported by the National Science Foundation under grants IIS-
1718457, IIS-1617590, and CCF-1733556, and the ARO under award W911NF-17-1-0082, as well
as XSEDE computing resources provided by the Pittsburgh Supercomputing Center. The Brains vs.
AI competition was sponsored by Carnegie Mellon University, Rivers Casino, GreatPoint Ventures,
Avenue4Analytics, TNG Technology Consulting, Artificial Intelligence, Intel, and Optimized Markets,
Inc. We thank Kristen Gardner, Marcelo Gutierrez, Theo Gutman-Solo, Eric Jackson, Christian Kroer,
Tim Reiff, and the anonymous reviewers for helpful feedback.

References
[1] Darse Billings, Neil Burch, Aaron Davidson, Robert Holte, Jonathan Schaeffer, Terence

Schauenberg, and Duane Szafron. Approximating game-theoretic optimal strategies for full-
scale poker. In Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI), 2003.

[2] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit
hold’em poker is solved. Science, 347(6218):145–149, January 2015.

[3] Noam Brown, Christian Kroer, and Tuomas Sandholm. Dynamic thresholding and pruning
for regret minimization. In AAAI Conference on Artificial Intelligence (AAAI), pages 421–429,
2017.

[4] Noam Brown and Tuomas Sandholm. Regret-based pruning in extensive-form games. In
Advances in Neural Information Processing Systems, pages 1972–1980, 2015.

[5] Noam Brown and Tuomas Sandholm. Simultaneous abstraction and equilibrium finding in
games. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
2015.

[6] Noam Brown and Tuomas Sandholm. Baby Tartanian8: Winning agent from the 2016 annual
computer poker competition. In Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence (IJCAI-16), pages 4238–4239, 2016.

[7] Noam Brown and Tuomas Sandholm. Reduced space and faster convergence in imperfect-
information games via regret-based pruning. arXiv preprint arXiv:1609.03234, 2016.

[8] Neil Burch, Michael Johanson, and Michael Bowling. Solving imperfect information games
using decomposition. In AAAI Conference on Artificial Intelligence (AAAI), pages 602–608,
2014.

[9] Murray Campbell, A Joseph Hoane, and Feng-Hsiung Hsu. Deep Blue. Artificial intelligence,
134(1-2):57–83, 2002.

[10] Sam Ganzfried and Tuomas Sandholm. Action translation in extensive-form games with large
action spaces: axioms, paradoxes, and the pseudo-harmonic mapping. In Proceedings of the
Twenty-Third international joint conference on Artificial Intelligence, pages 120–128. AAAI
Press, 2013.

[11] Sam Ganzfried and Tuomas Sandholm. Potential-aware imperfect-recall abstraction with earth
mover’s distance in imperfect-information games. In AAAI Conference on Artificial Intelligence
(AAAI), 2014.

[12] Sam Ganzfried and Tuomas Sandholm. Endgame solving in large imperfect-information games.
In International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages
37–45, 2015.

[13] Andrew Gilpin, Javier Peña, and Tuomas Sandholm. First-order algorithm with O(ln(1/ε))
convergence for ε-equilibrium in two-person zero-sum games. Mathematical Programming,
133(1–2):279–298, 2012. Conference version appeared in AAAI-08.

[14] Andrew Gilpin and Tuomas Sandholm. A competitive Texas Hold’em poker player via au-
tomated abstraction and real-time equilibrium computation. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), pages 1007–1013, 2006.

[15] Andrew Gilpin and Tuomas Sandholm. Better automated abstraction techniques for imperfect
information games, with application to Texas Hold’em poker. In International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pages 1168–1175, 2007.

13

http://arxiv.org/abs/1609.03234

[16] Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sørensen. A heads-up no-limit texas
hold’em poker player: discretized betting models and automatically generated equilibrium-
finding programs. In Proceedings of the Seventh International Joint Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pages 911–918. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2008.

[17] Eric Jackson. A time and space efficient algorithm for approximately solving large imperfect
information games. In AAAI Workshop on Computer Poker and Imperfect Information, 2014.

[18] Michael Johanson. Measuring the size of large no-limit poker games. Technical report,
University of Alberta, 2013.

[19] Michael Johanson, Nolan Bard, Neil Burch, and Michael Bowling. Finding optimal abstract
strategies in extensive-form games. In Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, pages 1371–1379. AAAI Press, 2012.

[20] Christian Kroer, Kevin Waugh, Fatma Kılınç-Karzan, and Tuomas Sandholm. Theoretical
and practical advances on smoothing for extensive-form games. In Proceedings of the ACM
Conference on Economics and Computation (EC), 2017.

[21] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte Carlo sampling
for regret minimization in extensive games. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NIPS), pages 1078–1086, 2009.

[22] Nick Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994.

[23] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level
artificial intelligence in heads-up no-limit poker. Science, 2017.

[24] Matej Moravcik, Martin Schmid, Karel Ha, Milan Hladik, and Stephen Gaukrodger. Refining
subgames in large imperfect information games. In AAAI Conference on Artificial Intelligence
(AAAI), 2016.

[25] John Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences, 36:48–49, 1950.

[26] Yurii Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM Journal of
Optimization, 16(1):235–249, 2005.

[27] Tuomas Sandholm. The state of solving large incomplete-information games, and application
to poker. AI Magazine, pages 13–32, Winter 2010. Special issue on Algorithmic Game Theory.

[28] Tuomas Sandholm. Abstraction for solving large incomplete-information games. In AAAI
Conference on Artificial Intelligence (AAAI), pages 4127–4131, 2015. Senior Member Track.

[29] Tuomas Sandholm. Solving imperfect-information games. Science, 347(6218):122–123, 2015.
[30] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin Müller, Robert

Lake, Paul Lu, and Steve Sutphen. Checkers is solved. Science, 317(5844):1518–1522, 2007.
[31] David Schnizlein, Michael Bowling, and Duane Szafron. Probabilistic state translation in

extensive games with large action sets. In Proceedings of the Twenty-First International Joint
Conference on Artificial Intelligence, pages 278–284, 2009.

[32] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[33] Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up limit
texas hold’em. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 645–652, 2015.

[34] Kevin Waugh, Nolan Bard, and Michael Bowling. Strategy grafting in extensive games. In
Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), 2009.

[35] Martin Zinkevich, Michael Johanson, Michael H Bowling, and Carmelo Piccione. Regret
minimization in games with incomplete information. In Proceedings of the Annual Conference
on Neural Information Processing Systems (NIPS), pages 1729–1736, 2007.

14

Appendix: Supplementary Material

A Maxmargin Solving

Maxmargin solving [24] is similar to Resolving, except that it seeks to improve P2’s strategy in the
subgame strategy as much as possible. While Resolving seeks a strategy for P2 in S that would
simply dissuade P1 from entering S, Maxmargin solving additionally seeks to punish P1 as much
as possible if P1 nevertheless chooses to enter S. A subgame margin is defined for each infoset
in Sr, which represents the difference in value between entering the subgame versus choosing the
alternative payoff. Specifically, for each infoset I1 ∈ Stop, the subgame margin is

MσS (I1) = CBV σ2(I1)− CBV σ
S
2 (I1) (2)

In Maxmargin solving, a Nash equilibrium σS for the augmented subgame described in Resolving
subgame solving is computed such that the minimum margin over all I1 ∈ Stop is maximized. Aside
from maximizing the minimum margin, the augmented subgames used in Resolving and Maxmargin
solving are identical.

Given our base strategy in Coin Toss, Maxmargin solving would result in P2 choosing Heads with
probability 5

8 , Tails with probability 3
8 , and Forfeit with probability 0.

The augmented subgame can be solved in a way that maximizes the minimum margin by using a
standard LP solver. In order to use iterative algorithms such as the Excessive Gap Technique [26, 13,
20] or Counterfactual Regret Minimization (CFR) [35], one can use the gadget game described by
Moravcik et al. [24]. Details on the gadget game are provided in the Appendix. Our experiments
used CFR.

Maxmargin solving is safe. Furthermore, it guarantees that if every Player 1 best response reaches
the subgame with positive probability through some infoset(s) that have positive margin, then
exploitability is strictly lower than that of the blueprint strategy. While the theoretical guarantees are
stronger, Maxmargin may lead to worse practical performance relative to Resolving when combined
with the techniques discussed in Section 6, due to Maxmargin’s greater tendency to overfit to
assumptions in the model.

B Description of Gadget Game

Solving the augmented subgame described in Maxmargin solving and Reach-Maxmargin solving
will not, by itself, necessarily maximize the minimum margin. While LP solvers can easily handle
this objective, the process is more difficult for iterative algorithms such as Counterfactual Regret
Minimization (CFR) and the Excessive Gap Technique (EGT). For these iterative algorithms, the
augmented subgame can be modified into a gadget game that, when solved, will provide a Nash
equilibrium to the augmented subgame and will also maximize the minimum margin [24]. This
gadget game is unnecessary when using distributional alternative payoffs, which is introduced in
section B.1.

The gadget game differs from the augmented subgame in two ways. First, all P1 payoffs that are
reached from the initial infoset of I1 ∈ Sr are shifted by the alternative payoff of I1, and there is
longer an alternative payoff. Second, rather than the game starting with a chance node that determines
P1’s starting infoset, P1 decides for herself which infoset to begin the game in. Specifically, the game
begins with a P1 node where each action in the node corresponds to an infoset I1 in Sr. After P1

chooses to enter an infoset I1, chance chooses the precise node h ∈ I1 in proportion to πσ−1(h).

By shifting all payoffs in the game by the size of the alternative payoff, the gadget game forces P1

to focus on improving the performance of each infoset over some baseline, which is the goal of
Maxmargin and Reach-Maxmargin solving. Moreover, by allowing P1 to choose the infoset in which
to enter the game, the gadget game forces P2 to focus on maximizing the minimum margin.

Figure 6 illustrates the gadget game used in Maxmargin and Reach-Maxmargin.

15

Figure 6: An example of a gadget game in Maxmargin refinement. P1 picks the initial infoset she
wishes to enter Sr in. Chance then picks the particular node of the infoset, and play then proceeds
identically to the augmented subgame, except all P1 payoffs are shifted by the size of the alternative
payoff and the alternative payoff is then removed from the augmented subgame.

B.1 Distributional Alternative Payoffs

One problem with existing safe subgame-solving techniques is that they may “overfit” to the alterna-
tive payoffs, even when we use estimates. Consider for instance a subgame with two different P1

infosets I1 and I ′1 at the top. Assume P1’s value for I1 is estimated to be 1, and for I ′1 is 10. Now
suppose during subgame solving, P2 has a choice between two different strategies. The first sets P1’s
value in the subgame for I1 to 0.99 and for I ′1 to 9.99. The second slightly increases P1’s value for
the subgame for I1 to 1.01 but dramatically lowers the value for I ′1 to 0. The safe subgame-solving
methods described so far would choose the first strategy, because the second strategy leaves one of
the margins negative. However, intuitively, the second strategy is likely the better option, because it
is more robust to errors in the model. For example, perhaps we are not confident that 10 is the exact
value, but instead believe its true value is normally distributed with 10 as the mean and a standard
deviation of 1. In this case, we would prefer the strategy that lowers the value for I ′1 to 0.

To address this problem, we introduce a way to incorporate the modeling uncertainty into the game
itself. Specifically, we introduce a new augmented subgame that makes subgame solving more
robust to errors in the model. This augmented subgame changes the augmented subgame used in
subgame Resolving (shown in Figure 3b) so that the alternative payoffs are random variables, and P1

is informed at the start of the augmented subgame of the values drawn from the random variables (but
P2 is not). The augmented subgame is otherwise identical. A visualization of this change is shown in
Figure 7. As the distributions of the random variables narrow, the augmented subgame converges
to the Resolve augmented subgame (but still maximizes the minimum margin when all margins are
positive). As the distributions widen, P2 seeks to maximize the sum over all margins, regardless of
which are positive or negative.

This modification makes the augmented subgame infinite in size because the random variables
may be real-valued and P1 could have a unique strategy for each outcome of the random variable.
Fortunately, the special structure of the game allows us to arrive at a P2 Nash equilibrium strategy for
this infinite-sized augmented subgame by solving a much simpler gadget game.

The gadget game is identical to the augmented subgame used in Resolve subgame solving (shown in
Figure 3b), except at each initial P1 infoset Ir,1 ∈ Sr, P1 chooses action a′S (that is, chooses to enter
the subgame rather than take the alternative payoff) with probability P

(
XI1 ≤ v(Ir,1, a

′
S)
)
, where

v(Ir,1, a
′
S) is the expected value of action a′S . (When solving via CFR, it is the expected value on

each iteration, as described in CFR-BR [19]). This leads to Theorem 3, which proves that solving

16

Figure 7: A visualization of the change in the augmented subgame from Figure 3b when using
distributional alternative payoffs.

this simplified gadget game produces a P2 strategy that is a Nash equilibrium in the infinite-sized
augmented subgame illustrated in Figure 7.
Theorem 3. Let S′ be a Resolve augmented subgame and S′r its root. Let S be a Distributional
augmented subgame similar to S′, except at each infoset Ir,1 ∈ Sr, P1 observes the outcome
of a random variable XI1 and the alternative payoff is equal to that outcome. If CFR is used
to solve S′ except that the action leading to S′ is taken from each Ir,1 ∈ S′r with probability
P
(
XI1 ≤ vt(Ir,1, a′S)

)
, where vt(Ir,1, a′S) is the value on iteration t of action a′S , then the resulting

P2 strategy σS
′

2 in S′ is a P2 Nash equilibrium strategy in S.

Another option which also solves the game but has better empirical performance relies on the softmax
(also known as Hedge) algorithm [22]. This gadget game is more complicated, and is described in
detail in Appendix C. We use the softmax gadget game in our experiments.

The correct distribution to use for the random variables ultimately depends on the actual unknown
errors in the model. In our experiments for this technique, we set XI1 ∼ N

(
µI1 , s

2
I1

)
, where µI is

the blueprint value (plus any gifts). sI1 is set as the difference between the blueprint value of I1, and
the true (that is, unabstracted) counterfactual best response value of I1. Our experiments show that
this heuristic works well, and future research could yield even better options.

C Hedge for Distributional Subgame Solving

In this paper we use CFR [35] with Hedge in Sr, which allows us to leverage a useful property of
the Hedge algorithm [22] to update all the infosets resulting from outcomes of XI1 simultaneously.9
When using Hedge, action a′S in infoset Ir,1 in the augmented subgame is chosen on iteration t with

probability eηtv̂(Ir,1,a
′
S)

eηtv̂(Ir,1,a
′
S

)+eηtv̂(Ir,1,a
′
T

)
. Where v̂(Ir,1, a

′
T) is the observed expected value of action a′T ,

v̂(Ir,1, a
′
S) is the observed expected value of action a′S , and ηt is a tuning parameter. Since, action a′S

leads to identical play by both players for all outcomes of X , v̂(Ir,1, a
′
S) is identical for all outcomes

of X . Moreover, v̂(Ir,1, a
′
T) is simply the outcome of XI1 . So the probability that a′S is taken across

all infosets on iteration t is ∫ ∞
−∞

eηtv̂(Ir,1,a
′
S)

eηtv̂(Ir,1,a′S) + eηtx
fXI1 (x)dx (3)

where fXI1 (x) is the pdf of XI1 . In other words, if CFR is used to solve the augmented subgame,
then the game being solved is identical to Figure 3b except that action a′S is always chosen in infoset
I1 on iteration t with probability given by (3). In our experiments, we set the Hedge tuning parameter

η as suggested in [3]: ηt =

√
ln(|A(I1)|)

3
√
V AR(I1)t

√
t
, where V AR(I1)t is the observed variance in the payoffs

9Another option is to apply CFR-BR [19] only at the initial P1 nodes when deciding between a′T and a′S .

17

the infoset has received across all iterations up to t. In the subgame that follows Sr, we use CFR+ as
the solving algorithm.

D Scaling of Gifts

To retain the theoretical guarantees of Reach subgame solving, one must ensure that the gifts assigned
to reachable subgames do not (in aggregate) exceed the original gift. That is, if g(I1) is a gift at
infoset I1, we must ensure that CBV σ

∗
2 (I1) ≤ CBV σ2(I1) + g(I1). In this paper we accomplish

this by increasing the margin of an infoset I ′1, where I1 v I ′1, by at most g(I1). However, empirical
performance may improve if the increase to margins due to gifts is scaled up by some factor. In
most games we experimented on, exploitability decreased the further the gifts were scaled. However,
Figure 8 shows one case in which we observe the exploitability increasing when the gifts are scaled
up too far. The graph shows exploitability when the gifts are scaled by various factors. At 0, the
algorithm is identical to Maxmargin. at 1, the algorithm is the theoretically correct form of Reach-
Maxmargin. Optimal performance in this game occurs when the gifts are scaled by a factor of about
1, 000. Scaling the gifts by 100, 000 leads to performance that is worse than Maxmargin subgame
solving. This empirically demonstrates that while scaling up gifts may lead to better performance in
some cases (because an entire gift is unlikely to be used in every subgame that receives one), it may
also lead to far worse performance in some cases.

Figure 8: Exploitability in Flop Texas Hold’em of Reach-Maxmargin as we scale up the size of gifts.

E Rules for Poker Variants

Our experiments are conducted on heads-up no-limit Texas hold’em (HUNL), as well as smaller-scale
variants we call no-limit flop hold’em (NLFH) and no-limit turn hold’em (NLTH). We begin by
describing the rules of HUNL.

In the form of HUNL discussed in this paper, each player starts a hand with $20,000. One player is
designated P1, while the other is P2. This assignment alternates between hands. HUNL consists of
four rounds of betting. On a round of betting, each player can choose to either fold, call, or raise. If
a player folds, that player immediately surrenders the pot to the opponent and the game ends. If a
player calls, that players places a number of chips in the pot equal to the opponent’s contribution. If a
player raises, that player adds more chips to the pot than the opponent’s contribution. A round of
betting ends after a player calls. Players can continue to go back and forth with raises in a round until
one of them runs out of chips.

If either player chooses to raise first in a round, they must raise a minimum of $100. If a player raises
after another player has raised, that raise must be greater than or equal to the last raise. The maximum

18

amount for a bet or raise is the remainder of that player’s chip stack, which in our model is $20,000
at the beginning of a game.

At the start of HUNL, both players receive two private cards from a standard 52-card deck. P1 must
place a big blind of $100 in the pot, while P2 must place a small blind of $50 in the pot. There is then
a round of betting (the preflop), starting with P2. When the round ends, three community cards are
dealt face up between the players. There is then another round of betting (the flop), starting with P1

this time. After the round of betting completes, another community card is dealt face up, and another
round of betting commences starting with P1 (the turn). Finally, one more community card is dealt
face up, and a final betting round occurs (the river), again starting with P1. If neither player folds
before the final betting round completes, the player with the best five-card poker hand, constructed
from their two private cards and the five face-up community cards, wins the pot. In the case of a tie,
the pot is split evenly.

NLTH is similar to no-limit Texas hold’em except there are only three rounds of betting (the preflop,
flop, and turn) in which there are two options for bet sizes. There are also only four community
cards. NLFH is similar except there are only two rounds of betting (the preflop and flop), and three
community cards.

We experiment with two versions of NLFH, one small and one large, which include only a few
of the available actions in each infoset. The small game requires 1.1 GB to store the unabstracted
strategy as double-precision floats. The large game requires 4 GB. NLTH requires 35 GB to store the
unabstracted strategy.

F Proof of Theorem 1

Proof. Assume MσS

r (I1) ≥ 0 for every infoset I1 and assume π
BR(σ′2)
1 (I∗1) > 0 for some

I∗1 ∈ Stop and let ε = Mr(I
∗
1). Define πσ−1(I1) =

∑
h∈I1 π

σ
−1(h) and define πσ−1(I1, I

′
1) =∑

h∈I1,h′∈I′1
πσ−1(h, h′).

We show that for every P1 infoset I1 v I∗1 where P (I1) = P1,

CBV σ
′
2(I1) ≤ CBV σ

−S
2 (I1)+∑

I′′1 ·a′′vI1|P (I′′1)=P1

(
bCBV σ

−S
2 (I ′′1)− CBV σ

−S
2 (I ′′1 , a

′′)c
)
−

∑
h∈I1,h∗∈I∗1

πσ2
−1(h, h∗)ε (4)

By the definition of MσS

r (I∗1) this holds for I∗1 itself. Moreover, the condition holds for every other
I1 ∈ Stop, because by assumption every margin is nonnegative and πσ2

−1(I1, I
∗
1) = 0 for any I1 ∈ Stop

where I1 6= I∗1 . The condition also clearly holds for any I1 with no descendants in S because then
πσ2
−1(I1, I

∗
1) = 0 and σ′2(h) = σ−S2 (h) in all P2 nodes following I1. This satisfies the base step. We

now move on to the inductive step.

Let Succ(I1, a) be the set of earliest-reachable P1 infosets following I1 such that P (I ′1) = P1 for
I ′ ∈ Succ(I1, a). Formally, I ′1 ∈ Succ(I1, a) if P (I ′1) = P1 and I1 · a v I ′1 and for any other
I ′′1 ∈ Succ(I1, a), I ′′1 6@ I ′1. Then

CBV σ
′
2(I1, a) = CBV σ

−S
2 (I1, a)+ ∑

I′1∈Succ(I1,a)

π
σ′2
−1(I1, I

′
1)(CBV σ

′
2(I ′1)− CBV σ

−S
2 (I ′1)) (5)

Assume that every I ′1 ∈ Succ(I1, a) satisfies (4). Then

CBV σ
′
2(I1, a) ≤ CBV σ

−S
2 (I1, a)− πσ2

−1(I1, I
∗
1)ε+∑

I′1∈Succ(I1,a)

πσ2
−1(I1, I

′
1)
(∑
I′′1 ·a′′vI′1|P (I′′1)=P1

(
bCBV σ

−S
2 (I ′′1)− CBV σ

−S
2 (I ′′1 , a

′′)c
))

19

CBV σ
′
2(I1, a) ≤ CBV σ

−S
2 (I1)−

(
CBV σ

−S
2 (I1)− CBV σ

−S
2 (I1, a)

)
− πσ2
−1(I1, I

∗
1)ε+∑

I′1∈Succ(I1,a)

πσ2
−1(I1, I

′
1)
(∑
I′′1 ·a′′vI′1|P (I′′1)=P1

(
bCBV σ

−S
2 (I ′′1)− CBV σ

−S
2 (I ′′1 , a

′′)c
))

Since bCBV σ
−S
2 (I1)− CBV σ

−S
2 (I1, a)c ≤ CBV σ

−S
2 (I1)− CBV σ

−S
2 (I1, a1) so we get

CBV σ
′
2(I1, a) ≤ CBV σ

−S
2 (I1)− b(CBV σ

−S
2 (I1)− CBV σ

−S
2 (I1, a)c − πσ2

−1(I1, I
∗
1)ε+∑

I′1∈Succ(I1,a)

πσ2
−1(I1, I

′
1)
(∑
I′′1 ·a′′vI′1|P (I′′1)=P1

(
bCBV σ

−S
2 (I ′′1)− CBV σ

−S
2 (I ′′1 , a

′′)c
))

CBV σ
′
2(I1, a) ≤ CBV σ

−S
2 (I1)− πσ2

−1(I1, I
∗
1)ε+∑

I′1∈Succ(I1,a)

πσ2
−1(I1, I

′
1)
(∑
I′′1 ·a′′vI1|P (I′′1)=P1

(
bCBV σ

−S
2 (I ′′1)− CBV σ

−S
2 (I ′′1 , a

′′)c
))

CBV σ
′
2(I1, a1) ≤ CBV σ

−S
2 (I1)−πσ2

−1(I1, I
∗
1)ε+

∑
I′′1 ·a′′vI1|P (I′′1)=P1

(
bCBV σ

−S
2 (I ′′1)−CBV σ

−S
2 (I ′′1 , a

′′
1)c
)

Since πBR(σ′2)
1 (I∗1) > 0, and action a leads to I∗1 , so by definition of a best response,CBV σ

′
2(I1, a) =

CBV σ
′
2(I1). Thus,

CBV σ
′
2(I1) ≤ CBV σ

−S
2 (I1)−πσ2

−1(I1, I
∗
1)ε+

∑
I′′1 ·a′′vI1|P (I′′1)=P1

(
bCBV σ

−S
2 (I ′′1)−CBV σ

−S
2 (I ′′1 , a

′′)c
)

which satisfies the inductive step.

Applying this reasoning to the root of the entire game, we arrive at exp(σ′2) ≤ exp(σ−S2) −
πσ2
−1(I∗1)ε.

Proof of Theorem 2

Proof. Without loss of generality, we assume that it is player P2 who conducts subgame solving. We
define a node h in a subgame S as earliest-reachable if there does not exist a node h′ ∈ S such that
h′ ≺ h. For each earliest-reachable node h ∈ S, let hr be its parent and aS be the action leading to
h such that hr · aS = h. We require hr to be a P1 node; if it is not, then we can simply insert a P1

node with only a single action between hr and h. Let Sr be the set of all hr for S.

Applying subgame solving to subgames as they are reached during play is equivalent to applying
subgame solving to every subgame before play begins, so we can phrase what follows in the context
of all subgames being solved before play begins. Let σ′2 be the P2 strategy produced after subgame
solving is applied to every subgame. We show inductively that for any P1 infoset I1 6∈ S where it is
P1’s turn to move (i.e., P (I1) = P1), the counterfactual best response values for P1 satisfy

CBV σ
′
2(I1) ≤ CBV σ

∗
2 (I1) + 2∆ (6)

Define Succ(I1, a) as the set of infosets belonging to P1 that follow action a in I1 and where it is
P1’s turn and where P1 has not had a turn since a, as well as terminal nodes follow action a in
I1 without P1 getting a turn. Formally, a terminal node z ∈ Z is in Succ(I1, a) if there exists a
history h ∈ I1 such that h · a � z and there does not exist a history h′ such that P (h′) = P1 and
h · a � h′ ≺ z. Additionally, an infoset I ′1 belonging to P1 is in Succ(I1, a) if P (I ′1) = P1 and
I1 · a � I ′1 and there does not exist an earlier infoset I ′′1 belonging to P1 such that P (I ′′1) = P1 and
I ′ · a � I ′′1 ≺ I ′1. Define Succ(I1) as ∪a∈A(I1)Succ(I1, a). Similarly, we define Succ(h, a) as the set
of histories belonging to P (h), or terminals, that follow action a and where P (h) has not had a turn
since a. Formally, h′ ∈ Succ(h, a) if either P (h′) = P (h) or P (h′) ∈ Z and h · a � h′ and there
does not exist a history h′′ such that P (h′′) = P (h) and h · a � h′′ ≺ h′.
Now we define a level L for each P1 infoset where it is P1’s turn and the infoset is not in the set of
subgames S.

20

• For immediate parents of subgames we define the level to be zero: for all I1 ∈ Sr for any
subgame S ∈ S, L(I1) = 0.

• For infoset that are not ancestors of subgames, we define the level to be zero: L(I1) = 0 for
any infoset I1 that is not an ancestor of a subgame in S.

• For all other infosets, the level is one greater than the greatest level of its successors:
L(I1) = `+ 1 where ` = maxI′1∈Succ(I1) L(I ′1) where L(z) = 0 for terminal nodes z.

Base case of induction

First consider infosets I1 ∈ Sr for some subgame S ∈ S. We define Mσ′2(I1) = vσ(I1, aS) −
CBV σ

′
2(I1, aS). Consider a subgame S ∈ S. Estimated-Maxmargin subgame solving arrives at a

strategy σ′2 such that minI1∈Sr M
σ′2(I1) is maximized. By the assumption in the theorem statement,

|vσ(I1, aS)− CBV σ∗2 (I1, aS)| ≤ ∆ for all I1 ∈ Sr. Thus, σ∗2 satisfies minI1∈Sr M
σ∗2 (I1) ≥ −∆

and therefore minI1∈Sr M
σ′2(I1) ≥ −∆, because Estimated-Maxmargin subgame solving could,

at least, arrive at σ′2 = σ∗2 . From the definition of Mσ′2(I1), this implies that for all I1 ∈ Sr,
CBV σ

′
2(I1, aS) ≤ vσ(I1, aS) + ∆. Since by assumption vσ(I1, aS) ≤ CBV σ

∗
2 (I1, aS) + ∆, this

gives us CBV σ
′
2(I1, aS) ≤ CBV σ∗2 (I1, aS) + 2∆.

Now consider infosets I1 that are not ancestors of any subgame in S. By definition, for all h
such that h � I1 or I1 � h, and P (h) = P2, σ∗2(I2(h)) = σ2(I2(h)) = σ′2(I2(h)). Therefore,
CBV σ

′
2(I1) = CBV σ

∗
2 (I1).

So, we have shown that (6) holds for any I1 such that L(I1) = 0.

Inductive step

Now assume that (6) holds for any P1 infoset I1 where P (I1) = P1 and I1 6∈ S and L(I1) ≤ `.
Consider an I1 such that P (I1) = P1 and I1 6∈ S and L(I1) = `+ 1.

From the definition of CBV σ
′
2(I1, a), we have that for any action a ∈ A(I1),

CBV σ
′
2(I1, a) =

(∑
h∈I1

((
π
σ′2
−1(h)

)(
v〈CBR(σ′2),σ′2〉(h · a)

)))
/
∑
h∈I1

π
σ′2
−1(h) (7)

Since for any h ∈ I1 there is no P1 action between a and reaching any h′ ∈ Succ(h, a), so
π
σ′2
1 (h · a, h′) = 1. Thus,

CBV σ
′
2(I1, a) =

(∑
h∈I1

(
π
σ′2
−1(h)

∑
h′∈Succ(h,a)

π
σ′2
−1(h, h′)

(
v〈CBR(σ′2),σ′2〉(h′)

)))
/
∑
h∈I1

π
σ′2
−1(h) (8)

CBV σ
′
2(I1, a) =

(∑
h∈I1

∑
h′∈Succ(h,a)

((
π
σ′2
−1(h′)

)
v〈CBR(σ′2),σ′2〉(h′)

))
/
∑
h∈I1

π
σ′2
−1(h) (9)

Since the game is perfect recall,
∑
h∈I1

∑
h′∈Succ(h,a) f(h′) =

∑
I′1∈Succ(I1,a)

∑
h′∈I′1

f(h′) for any
function f . Thus,

CBV σ
′
2(I1, a) =

(∑
I′1∈Succ(I1,a)

∑
h′∈I′1

((
π
σ′2
−1(h′)

)(
v〈CBR(σ′2),σ′2〉(h′)

)))
/
∑
h∈I1

π
σ′2
−1(h) (10)

From the definition of CBV σ
′
2(I ′1) we get

CBV σ
′
2(I1, a) =

(∑
I′1∈Succ(I1,a)

(
CBV σ

′
2(I ′1)

∑
h′∈I′1

π
σ′2
−1(h′)

))
/
∑
h∈I1

π
σ′2
−1(h) (11)

Since (6) holds for all I ′1 ∈ Succ(I1, a), so

CBV σ
′
2(I1, a) ≤

(∑
I′1∈Succ(I1,a)

(
(CBV σ

∗
2 (I ′1) + 2∆)

∑
h′∈I′1

π
σ′2
−1(h′)

))
/
∑
h∈I1

π
σ′2
−1(h) (12)

21

Since P2’s strategy is fixed according to σ2 outside of S, so for all I1 6∈ S, πσ
′

−1(I1) = πσ−1(I1) =

πσ
∗

−1(I1). Therefore,

CBV σ
′
2(I1, a) ≤

(∑
I′1∈Succ(I1,a)

(
(CBV σ

∗
2 (I ′1) + 2∆)

∑
h′∈I′1

π
σ∗2
−1(h′)

))
/
∑
h∈I1

π
σ∗2
−1(h) (13)

Pulling out the 2∆ constant and applying equation (11) for CBV σ
∗
2 (I1, a) we get

CBV σ
′
2(I1, a) ≤ CBV σ

∗
(I1, a) + 2∆

((∑
I′1∈Succ(I1,a)

∑
h′∈I′1

π
σ∗2
−1(h′)

)
/
∑
h∈I1

π
σ∗2
−1(h)

)
(14)

Since
(∑

I′1∈Succ(I1,a)

∑
h′∈I′1

π
σ∗2
−1(h′)

)
=
∑
h∈I1 π

σ∗2
−1(h) we arrive at

CBV σ
′
2(I1, a) ≤ CBV σ

∗
(I1, a) + 2∆ (15)

Thus, (6) holds for I1 as well and the inductive step is satisfied. Extending (6) to the root of the game,
we see that exp(σ′2) ≤ exp(σ∗2) + 2∆.

G Proof of Theorem 3

Proof. We prove inductively that using CFR in S′ while choosing the action leading to S′ from each
I1 ∈ S′r with probability P

(
XI1 ≤ vt(I1, a

′
S)
)

results in play that is identical to CFR in S and
CFR-BR [19] in Sr, which converges to a Nash equilibrium.

For each P2 infoset I ′2 in S′ where P (I ′2) = P2, there is exactly one corresponding infoset I2 in
S that is reached via the same actions, ignoring random variables. Each P1 infoset I ′1 in S′ where
P (I ′1) = P1 corresponds to a set of infosets in S that are reached via the same actions, where the
elements in the set differ only by the outcome of the random variables. We prove that on each
iteration, the instantaneous regret for these corresponding infosets is identical (and therefore the
average strategy played in the P2 infosets over all iterations is identical).

At the start of the first iteration of CFR, all regrets are zero. Therefore, the base case is trivially true.
Now assume that on iteration t, regrets are identical for all corresponding infosets. Then the strategies
played on iteration t in S are identical as well.

First, consider an infoset I ′1 in S′ and a corresponding infoset I1 in S. Since the remaining structure
of the game is identical beyond I ′1 and I1, and because P2’s strategies are identical in all P2 infosets
encountered, so the immediate regret for I ′1 and I1 is identical as well.

Next, consider a P1 infoset I1,x in Sr in which the random variable XI1 has an observed value of
x. Let the corresponding P1 infoset in S′r be I ′1. Since CFR-BR is played in this infoset, and since
action a′T leads to a payoff of x, so P1 will choose action a′S with probability 1 if x ≥ a′T and with
probability 0 otherwise. Thus, for all infosets in Sr corresponding to I ′1, action a′S is chosen with
probability P

(
XI1 ≤ v(I1, a

′
S)
)
.

Finally, consider a P2 infoset I2 in S and its corresponding infoset I ′2 in S′. Since in both cases action
a′T is taken in Sr with probability P

(
XI1 ≤ v(I1, a

′
S)
)
, and because P1 plays identically between

corresponding infosets in S and S′, and because the structure of the game is otherwise identical, so
the immediate regret for I ′1 and I1 is identical as well.

22

	1 Introduction
	2 Coin Toss
	3 Notation and Background
	4 Prior Approaches to Subgame Solving
	4.1 Unsafe Subgame Solving
	4.2 Subgame Resolving

	5 Reach Subgame Solving
	6 Estimates for Alternative Payoffs
	7 Nested Subgame Solving
	8 Experiments
	9 Conclusion
	10 Acknowledgments
	A Maxmargin Solving
	B Description of Gadget Game
	B.1 Distributional Alternative Payoffs

	C Hedge for Distributional Subgame Solving
	D Scaling of Gifts
	E Rules for Poker Variants
	F Proof of Theorem 1
	G Proof of Theorem 3

