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We study the fair division problem on divisible heterogeneous resources (the cake cutting problem) with

strategic agents, where each agent can manipulate his/her private valuation to receive a better allocation.

A (direct-revelation) mechanism takes agents’ reported valuations as input and outputs an allocation that

satisfies a given fairness requirement. A natural and fundamental open problem, first raised by Chen, Lai,

Parkes, and Procaccia [22] and subsequently raised in reference [9, 11, 12, 19, 33, 35], etc., is whether there

exists a deterministic, truthful, and envy-free (or even proportional) cake cutting mechanism. In this paper,

we resolve this open problem by proving that there does not exist a deterministic, truthful and proportional

cake cutting mechanism, even in the special case where all of the following hold:

• there are only two agents;

• each agent’s valuation is a piecewise-constant function;

• each agent is hungry: each agent has a strictly positive value on any part of the cake.

The impossibility result extends to the case where the mechanism is allowed to leave some part of the cake

unallocated.

To circumvent this impossibility result, we aim to design mechanisms that possess a certain degree of

truthfulness. Motivated by the kind of truthfulness possessed by the classical I-cut-you-choose protocol, we

propose a weaker notion of truthfulness, the proportional risk-averse truthfulness. We show that the well-known

moving-knife (Dubins-Spanier) procedure and Even-Paz algorithm do not have this truthful property. We

propose a mechanism that is proportionally risk-averse truthful and envy-free, and a mechanism that is

proportionally risk-averse truthful that always outputs allocations with connected pieces.
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1 INTRODUCTION
The cake cutting problem studies the allocation of a piece of divisible heterogeneous resource to

multiple agents, normally with a given fairness requirement. The cake is a metaphor for divisible

heterogeneous resources, which is normally modeled as an interval [0, 1]. Different agents have
different valuations on different parts of the interval. Typically, each agent’s valuation is described

by a value density function 𝑓 : [0, 1] → R≥0, and his/her value on a subset 𝑋 ⊆ [0, 1] is given
by the Riemann integral

∫
𝑋
𝑓 (𝑥)𝑑𝑥 . Starting with Steinhaus [39], the cake cutting problem has

been widely studied by mathematicians (e.g., [16, 17, 25, 28, 41]), economists (e.g., [1, 42, 43]), and

computer scientists (e.g., most of the papers cited by this paper). See the books [15, 37], Part II of

the book [18], and the survey [35].
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Two of the most widely studied fairness criteria are proportionality and envy-freeness. An al-

location is proportional if each agent believes (s)he receives a share with a value that is at least

a
1

𝑛
fraction of the value of the entire cake (where 𝑛 is the number of the agents). An allocation

is envy-free if each agent believes (s)he receives a share that has weakly more value than the

share allocated to each of the other agents (i.e., an agent does not envy any other agents). Formal

definitions for the two notions are in Sect. 2. If we require that the entire cake needs to be allocated

(i.e., discarding some part of the cake is disallowed), an envy-free allocation is always proportional.

It is well-known that envy-free allocations (with the entire cake allocated) always exist [17], even

if we require each agent must receive a connected interval [41]. In addition to the existence, the

algorithm design aspect has also been considered for a long history [7, 8, 25, 28, 40]. In particular,

we know how to compute a proportional allocation [25, 28] and an envy-free allocation [7] for any

number of agents.

However, a fundamental issue when deploying a certain cake cutting algorithm is that agents are

self-interested and may manipulate and misreport their valuations to the algorithm to get better

allocations. This motivates the study of the cake-cutting problem from a game-theoretical aspect,

in particular, a mechanism design aspect. Is there a truthful and fair cake cutting mechanism such

that truth-telling is each agent’s dominant strategy? This question was first proposed by Chen, Lai,

Parkes, and Procaccia [22].

To answer this question, we first need to address the following issue: how can we represent

a value density function succinctly? Two different approaches have been considered in the past

literature. In the first approach (e.g., [7, 8, 17, 30, 37, 40]), the mechanism communicates with the

agents by a query model called the Robertson-Webb query model, where the mechanism learns the

valuation of each agent through a sequence of queries that are of the following two types:

• Eval𝑖 (𝑥,𝑦): ask agent 𝑖 his/her value on the interval [𝑥,𝑦];
• Cut𝑖 (𝑥, 𝑟 ): ask agent 𝑖 for a point 𝑦 where [𝑥,𝑦] is worth exactly 𝑟 .

In the second approach (e.g., [10–12, 22, 33, 34]), the value density function is assumed to be

piecewise-constant. Piecewise-constant functions can approximate most natural real functions

arbitrarily closely, and they can be succinctly encoded. The mechanism then takes the 𝑛 encoded

value density functions as inputs and outputs an allocation. These mechanisms are called direct
revelation mechanisms.

In the Robertson-Webb query model setting, the game agents are playing is an extensive-form
game, whereas, in the piecewise-constant valuation setting, this is a one-round game where all the

agents report their valuations simultaneously. Naturally, when truthfulness is concerned, agents in

the first setting have much more room for manipulation. Indeed, for the first setting, Kurokawa

et al. [30] prove that no truthful and envy-free mechanism terminates within a bounded number of

Robertson-Webb queries. A strong impossibility result by Brânzei and Miltersen [19] show that, for

any truthful mechanism, there exists an agent who receives a zero value. In particular, when there

are only two agents, the only truthful mechanism is essentially the one that allocates the entire

cake to a single agent (under some mild technical assumptions).

For direct revelation mechanisms, Chen et al. [22] give the first truthful envy-free cake cutting

mechanism that works when each agent’s valuation is piecewise-uniform, a special case of piecewise-

constant valuations with the additional assumption that each value density function takes value

either 0 or 1. Chen et al. [22] then propose the following natural open problem.

Problem 1. Does there exist a (deterministic) truthful, envy-free (or even proportional) cake

cutting mechanism for piecewise-constant value density functions?

Many researchers make partial progress on this problem in the past decade. Aziz and Ye [9] show

that there exists no truthful mechanism that satisfies either one of the following properties:

 
Session 4B: Fair Division and Prediction Markets ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

405



• Proportional and Pareto-optimal;

• Robust-proportional and non-wasteful (non-wasteful means that no piece is allocated to an

agent who does not want it, a notion weaker than Pareto-optimality).

Menon and Larson [33] show that there exists no truthful mechanism that is even approximately

proportional, with the constraint that each agent must receive a connected piece. Bei et al. [11]

show that there exists no truthful, proportional mechanism under any one of the following three

settings:

• the mechanism is non-wasteful;

• the mechanism is position-oblivious (meaning that the allocation of a cake-part is based only

on the agents’ valuations of that part, and not on its relative position on the cake);

• agents report the value density functions sequentially, where an agent’s strategy can depend

on the reports of the previous agents.

On the positive side, the mechanism proposed by Chen et al. [22] for piecewise-uniform value

density functions is further studied by Maya and Nisan [32] and Li et al. [31]. Maya and Nisan [32]

characterize truthful mechanisms and show that the mechanism proposed by Chen et al. [22] is

unique in some sense. Li et al. [31] show that this mechanism also works in the setting where agents

have externalities. Bei et al. [12] propose a truthful envy-free mechanism for piecewise-uniform

value density functions that do not need the free-disposal assumption, an assumption made in

the mechanism by Chen et al. [22]. Designing truthful and fair allocations has also been studied

for value density functions that are more restrictive than piecewise-uniform [2, 4, 38]. As can be

seen above, most of the positive results are regarding piecewise-uniform valuations or even more

restrictive ones.

Despite the above-mentioned progress, Problem 1 remains open.

All the mechanisms mentioned above are deterministic. If we allow randomized mechanisms,

a simple mechanism proposed by Mossel and Tamuz [34] is universal envy-free and truthful in

expectation. However, randomized mechanisms have many drawbacks. Firstly, agents can be risk-

seeking or risk-averse and may have different views on a truthful-in-expectation randomized

mechanism. Secondly, agents may have concerns about the source of the randomness. It is costly

to find a trustworthy random source. Agents receiving less utility due to randomness may believe

they have not been treated fairly.

In Appendix A, we discuss some additional related work that is less relevant.

1.1 Our Results
As the main result of this paper, we resolve Problem 1 by proving that there does not exist a

(deterministic) truthful proportional cake cutting mechanism. This impossibility result can be

extended to the setting where there are only two agents, each agent has a strictly positive value on

any part of the cake (we say that the agents are hungry in this case), and the mechanism is allowed

to leave some part of the cake unallocated. We further show that the impossibility result extends to

the setting where only approximate proportionality is required, for some constant approximation

ratio sufficiently close to 1.

Main Result: There does not exist a deterministic, truthful, and (approximately) proportional mech-
anism, even if there are only two agents, agents are hungry, and the mechanism is allowed to discard
some parts of the cake. (Theorem 3.1 and Theorem 3.11)

To circumvent this impossibility result, we propose a weaker truthful notion called risk-averse
truthful. This is motivated by the truthful guarantee of the I-cut-you-choose protocol (the protocol is
defined in Sect. 4, after Theorem 4.1). Our risk-averse truthful notion captures the risk-averseness
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of the agents and the setting where an agent does not know other agents’ valuations. Informally,

a mechanism is risk-averse truthful if either each agent’s misreporting of his/her valuation is

not beneficial, or there is a possibility that the misreporting will hurt the agent’s utility (see

Definition 4.2). Based on the solution concept of proportionality, we also consider a truthful notion

called proportionally risk-averse truthful that is stronger than risk-averse truthful. A proportional

mechanism is proportionally risk-averse truthful if either each agent’s misreporting of his/her

valuation is not more beneficial, or there is a possibility that the misreporting will make the agent

even fail to get a proportional allocation (see Definition 4.3).

We show that those well-known algorithms, e.g., the moving-knife procedure [25] and the

Even-Paz algorithm [28], do not satisfy this truthful property. We then propose a mechanism

that is proportionally risk-averse truthful and envy-free, and a mechanism that is proportionally

risk-averse truthful that always outputs allocations with connected pieces.

Result 2: There exists a mechanism that is proportionally risk-averse truthful and envy-free. (Theo-
rem 5.2)

Result 3: There exists a mechanism that is proportionally risk-averse truthful that always outputs
allocations with connected pieces. (Theorem 6.4, Theorem 6.5 and Theorem 6.6)

Our risk-averse truthful notion is similar to but stronger than the truthful notion defined by

Brams, Jones, and Klamler [16]. They also consider the setting where each agent does not know the

valuations of the other agents, and, in their notion, a mechanism is truthful if each agent cannot

misreport his/her valuation and “assuredly” do better. It is possible that misreporting will always

be no harm, sometimes make the agent’s utility unchanged, and sometimes be beneficial. In this

case, the misreporting cannot “assuredly do better”. It satisfies the truthful notion in reference [16]

but not our risk-averse truthfulness. For example, the above-mentioned moving-knife procedure

satisfies the truthful notion in reference [16] but not our risk-averse truthfulness. See Sect. 4 and

Appendix C for details and more comparisons.

1.2 Structure of This Paper
In Sect. 2, we formally describe the model of the cake cutting problem with direct revelation mech-

anisms. In Sect. 3, we present our main result: resolving Problem 1 and extending the impossibility

result to the approximation setting. Sect. 4 to Sect. 6 discuss the relaxations on dominant strategy

truthfulness and present several mechanisms that satisfy the relaxed truthful notions. We conclude

our paper and discuss some future research directions in Sect. 7.

2 PRELIMINARIES
The cake is modeled as the interval [0, 1], which is allocated to 𝑛 agents. Each agent 𝑖 has a value
density function 𝑓𝑖 : [0, 1] → R≥0 that describes his/her preference on the cake. A value density

function 𝑓𝑖 is piecewise-constant if [0, 1] can be partitioned into finitely many intervals, and 𝑓𝑖 is

constant on each of these intervals. We will assume agents’ value density functions are piecewise-

constant throughout the paper, although our results in Sect. 6 do not rely on this. Agent 𝑖 is hungry
if 𝑓𝑖 (𝑥) > 0 for any 𝑥 ∈ [0, 1]. Given a subset 𝑋 ⊆ [0, 1], agent 𝑖’s utility on 𝑋 , denoted by 𝑣𝑖 (𝑋 ), is
given by

𝑣𝑖 (𝑋 ) =
∫
𝑋

𝑓𝑖 (𝑥)𝑑𝑥 .

An allocation (𝐴1, . . . , 𝐴𝑛) is a collection of mutually disjoint subsets of [0, 1], where 𝐴𝑖 is the

subset allocated to agent 𝑖 . An allocation is entire if
⋃𝑛

𝑖=1𝐴𝑖 = [0, 1]. Notice that an impossibility

result without the entire requirement is stronger than an impossibility result with this requirement.
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An allocation is proportional if each agent receives his/her average share of the entire cake:

∀𝑖 : 𝑣𝑖 (𝐴𝑖 ) ≥
1

𝑛
𝑣𝑖 ( [0, 1]).

An allocation is 𝛼-approximately proportional if 1

𝑛
above is changed to

𝛼
𝑛
. An allocation is envy-free

if each agent receives a portion that has a weakly higher value than any portion received by any

other agent, based on his/her own valuation:

∀𝑖, 𝑗 : 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 ).

An entire envy-free allocation is always proportional. In the case of two agents, if an allocation

is entire, it is envy-free if and only if it is proportional. In Sect. 6, we consider a specific kind of

allocations where each agent needs to receive a connected piece of cake, i.e., each 𝐴𝑖 is an interval.
Amechanism is a functionM that maps 𝑛 value density functions 𝐹 = (𝑓1, . . . , 𝑓𝑛) to an allocation
(𝐴1, . . . , 𝐴𝑛). GivenM(𝐹 ) = (𝐴1, . . . , 𝐴𝑛), we writeM𝑖 (𝐹 ) = 𝐴𝑖 . That is,M𝑖 (𝐹 ) outputs the share
allocated to agent 𝑖 , given input 𝐹 = (𝑓1, . . . , 𝑓𝑛). A mechanism is proportional/envy-free if it always

outputs a proportional/envy-free allocation with respect to the input 𝐹 = (𝑓1, . . . , 𝑓𝑛). A mechanism

is entire if it always outputs entire allocations. In this paper, we consider only deterministic

mechanisms.

A mechanismM is truthful if each agent’s dominant strategy is to report his/her true value

density function. That is, for each 𝑖 ∈ [𝑛], any (𝑓1, . . . , 𝑓𝑛) and any 𝑓 ′𝑖 ,

𝑣𝑖 (M𝑖 (𝑓1, . . . , 𝑓𝑛)) ≥ 𝑣𝑖
(
M𝑖 (𝑓1, . . . , 𝑓𝑖−1, 𝑓 ′𝑖 , 𝑓𝑖+1, . . . , 𝑓𝑛)

)
.

As a clarification, when proportionality/envy-freeness is concerned, a mechanism must output

an allocation that is proportional/envy-free with respect to the reported value density functions;
when truthfulness is concerned, we require each agent’s misreporting does not give this agent

strictly more utility, and the utility here is with respect to this agent’s true value density function.

3 IMPOSSIBILITY RESULT FOR TRUTHFUL PROPORTIONAL MECHANISM
In this section, we prove the following theorem.

Theorem 3.1. There does not exist a truthful proportional mechanism, even when all of the following
hold:

• there are two agents;
• each agent’s value density function is piecewise-constant;
• each agent is hungry: each 𝑓𝑖 satisfies 𝑓𝑖 (𝑥) > 0 for any 𝑥 ∈ [0, 1];
• the mechanism needs not to be entire: the mechanism may throw away parts of the cake.

We will prove Theorem 3.1 by contradiction. Suppose there exists a truthful proportional mecha-

nismM for two agents. For a description of the main idea behind the proof, we construct multiple

cake cutting instances, analyze the outputs ofM on these instances, and prove that truthfulness

and proportionality cannot be guaranteed on all these instances. In particular, we will construct

six instances. For the first five instances, we show that the outputs ofM are unique. Based on

the outputs for the first five instances, we show that any allocation output byM for the sixth

instance will violate either proportionality or truthfulness. The six instances constructed are shown

in Table 1.

We start with the simplest cake cutting instance.

Instance 1. 𝐹 (1) = (𝑓 (1)
1

, 𝑓
(1)
2
), where 𝑓 (1)

1
(𝑥) = 1 and 𝑓

(1)
2
(𝑥) = 1 for 𝑥 ∈ [0, 1].
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Index Instance Allocation

1
0 1

1

X1 X2 M(𝐹 (1) ) = (𝑋1, 𝑋2)

2
0 1

1

X1 X2 M(𝐹 (2) ) = (𝑋1, 𝑋2)

3
0 1

1

X11 X12 X21 X22 M(𝐹 (3) ) = (𝑋11 ∪ 𝑋21, 𝑋12 ∪ 𝑋22)

4
0 1

1

X11 X12 X21 X22 M(𝐹 (4) ) = (𝑋11 ∪ 𝑋21, 𝑋12 ∪ 𝑋22)

5
0 1

1

X11 X12 X21 X22 M(𝐹 (5) ) = (𝑋1, 𝑋2)

6
0 1

1

X11 X12 X21 X22 See Sect. 3.1

Table 1. Instances constructed for the proof of Theorem 3.1 and the corresponding allocations given byM.
The value density for agent 1 is shown in solid lines, and the value density for agent 2 is shown in dashed
lines.
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To ensure proportionality, we must have |M1 (𝐹 (1) ) | = |M2 (𝐹 (1) ) | = 1

2
. We will denote the

allocation ofM(𝐹 (1) ) by (𝑋1, 𝑋2). 𝑋1 and 𝑋2 will be used multiple times in the definitions of other

instances.

Definition 3.2. 𝑋1 =M1 (𝐹 (1) ) and 𝑋2 =M2 (𝐹 (1) ).

We have shown that |𝑋1 | = |𝑋2 | = 1

2
. It is helpful to assume 𝑋1 = [0, 0.5] and 𝑋2 = (0.5, 1]

without loss of generality.

In the instances constructed later, we let 𝜀 > 0 be a sufficiently small real number.

Next, we consider the following instance.

Instance 2. 𝐹 (2) = (𝑓 (2)
1

, 𝑓
(2)
2
), where 𝑓 (2)

1
(𝑥) = 1 for 𝑥 ∈ [0, 1] and

𝑓
(2)
2
(𝑥) =

{
𝜀 𝑥 ∈ 𝑋1

1 𝑥 ∈ 𝑋2

.

The following proposition shows that the only possible allocation output byM for Instance 2 is

(𝑋1, 𝑋2).

Proposition 3.3. M(𝐹 (2) ) = (𝑋1, 𝑋2).

Proof. Firstly, we must have |M2 (𝐹 (2) ) | ≤ 1

2
. Otherwise, agent 1 will receive a subset of length

strictly less than 1/2. Since agent 1’s valuation is uniform on [0, 1],M is not proportional.

Secondly, we must have 𝑋2 ⊆ M2 (𝐹 (2) ). Suppose otherwise that agent 2 does not receive all of
𝑋2, i.e., |𝑋2 ∩M2 (𝐹 (2) ) | < 1

2
. Given that |M2 (𝐹 (2) ) | ≤ 1

2
, we have

𝑣2

(
M2 (𝐹 (2) )

)
= 𝑣2

(
𝑋1 ∩M2 (𝐹 (2) )

)
+ 𝑣2

(
𝑋2 ∩M2 (𝐹 (2) )

)
≤ 𝜀 ·

(
1

2

− |𝑋2 ∩M2 (𝐹 (2) ) |
)
+ 1 · |𝑋2 ∩M2 (𝐹 (2) ) | <

1

2

.

On the other hand, if agent 2misreports his/her value density function to 𝑓
(1)
2

(instead of his/her true

value density function 𝑓
(2)
2

), the mechanism receives input (𝑓 (2)
1

, 𝑓
(1)
2
), which becomes Instance 1

since 𝑓
(1)
1

= 𝑓
(2)
1

. In this case the allocation output is (𝑋1, 𝑋2), and agent 2’s total value, in terms

of his true valuation 𝑓
(2)
2

, is
1

2
. Therefore, agent 2 can receive more value by misreporting his/her

value density function, andM cannot be truthful.

Putting these observations together, we have 𝑋2 ⊆ M2 (𝐹 (2) ) and |M2 (𝐹 (2) ) | ≤ 1

2
, which implies

M2 (𝐹 (2) ) = 𝑋2. Agent 1 will then receive the remaining part of the cake which is just enough to

guarantee proportionality:M1 (𝐹 (2) ) = 𝑋1. □

The next instance we consider is slightly more complicated.

Instance 3. 𝐹 (3) = (𝑓 (3)
1

, 𝑓
(3)
2
), where

𝑓
(3)
1
(𝑥) =

{
0.5 𝑥 ∈ 𝑋1

1 𝑥 ∈ 𝑋2

and 𝑓
(3)
2
(𝑥) =

{
𝜀 𝑥 ∈ 𝑋1

1 𝑥 ∈ 𝑋2

.

The following proposition shows that each agent’s allocated subset is exactly the union of half

of 𝑋1 and half of 𝑋2.

Proposition 3.4. |M1 (𝐹 (3) ) ∩𝑋1 | = |M1 (𝐹 (3) ) ∩𝑋2 | = |M2 (𝐹 (3) ) ∩𝑋1 | = |M2 (𝐹 (3) ) ∩𝑋2 | = 1

4
.
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We provide a brief intuition behind the proof first. Firstly, agent 1 cannot receive a subset of

length more than 0.5. Otherwise, in Instance 2, agent 1 will misreport his value density function

from 𝑓
(2)
1

to 𝑓
(3)
1

, which is more beneficial to agent 1 (as 𝑓
(2)
1

is uniform and agent 1 receives a

larger length by misreporting).

Secondly, agent 1 cannot receive less than half of 𝑋2. If agent 1 receives less than half of 𝑋2 by a

length of 𝑥 , agent 1 needs to receive more than half of 𝑋1 by a length of at least 2𝑥 to guarantee

proportionality. This will make the total length received by agent 1 more than 0.5.

Thirdly, agent 1 cannot receive more than half of 𝑋2. If agent 1 receives more than half of 𝑋2,

agent 2, having significantly less value on𝑋1, will have to receive a length on𝑋1 that is significantly

longer than half of 𝑋1. This will destroy the proportionality of agent 1 for that agent 2 has already

taken too much.

Finally, having shown that agent 1 must receive exactly half of 𝑋2, the proportionality of agent

1 and the proven fact that agent 1’s received total length is at most 0.5 imply that agent 1 has to

receive exactly half of 𝑋1.

Proof of Proposition 3.4. Firstly, we must have |M1 (𝐹 (3) ) | ≤ 1

2
. Suppose this is not the case:

|M1 (𝐹 (3) ) | > 1

2
. We show thatM cannot be truthful. Consider Instance 2 where agent 1’s value

density function is uniform. In Instance 2, if agent 1 misreports his/her value density function

to 𝑓
(3)
1

, the mechanismM will see an input that is exactly the same as 𝐹 (3) (notice 𝑓
(2)
2

= 𝑓
(3)
2

),

and agent 1 will receive a subset with length strictly more than
1

2
. However, we have seen in

Proposition 3.3 that agent 1 will receive a subset with length exactly
1

2
if (s)he reports truthfully.

Since agent 1’s true valuation is uniform, agent 1 will benefit from this misreporting.

Let |M1 (𝐹 (3) ) ∩𝑋2 | = 1

4
+𝑥 where 𝑥 ∈ [− 1

4
, 1
4
]. We aim to show that 𝑥 = 0. Agent 1’s total utility

on [0, 1] is
∫
1

0
𝑓
(3)
1
(𝑥)𝑑𝑥 = 3

4
. To guarantee proportionality, we must have

𝑣1

(
M1 (𝐹 (3) )

)
= 𝑣1

(
M1 (𝐹 (3) ) ∩ 𝑋1

)
+ 𝑣1

(
M1 (𝐹 (3) ) ∩ 𝑋2

)
= 0.5 ·

���M1 (𝐹 (3) ) ∩ 𝑋1

��� + 1 · ( 1
4

+ 𝑥
)
≥ 3

8

. (1)

By rearranging (1), we have |M1 (𝐹 (3) ) ∩ 𝑋1 | ≥ 1

4
− 2𝑥 . The total length agent 1 receives is then

|M1 (𝐹 (3) ) | = |M1 (𝐹 (3) ) ∩ 𝑋1 | + |M1 (𝐹 (3) ) ∩ 𝑋2 | ≥ 1

2
− 𝑥 . Since we have seen |M1 (𝐹 (3) ) | ≤ 1

2
at

the beginning, we have 𝑥 ≥ 0.

On the other hand, since |M1 (𝐹 (3) ) ∩ 𝑋2 | = 1

4
+ 𝑥 , we have |M2 (𝐹 (3) ) ∩ 𝑋2 | ≤ 1

4
− 𝑥 . Since

𝑣2 ( [0, 1]) = 1

2
+ 1

2
𝜀 and 𝑣2 (M2 (𝐹 (3) )∩𝑋2) = 1 · |M2 (𝐹 (3) )∩𝑋2 | ≤ 1

4
−𝑥 , to guarantee proportionality

for agent 2, we must have 𝑣2 (M2 (𝐹 (3) ) ∩𝑋1) ≥ 1

4
𝜀 + 𝑥 . Therefore, |M2 (𝐹 (3) ) ∩𝑋1 | ≥ 1

4
+ 𝑥

𝜀
, which

implies |M1 (𝐹 (3) ) ∩ 𝑋1 | ≤ 1

4
− 𝑥

𝜀
. Substituting this into (1), we have

0.5 ·
(
1

4

− 𝑥

𝜀

)
+
(
1

4

+ 𝑥
)
≥ 3

8

,

which implies 𝑥 ≤ 0 if 𝜀 is sufficiently small.

Therefore, 𝑥 = 0, and we have |M1 (𝐹 (3) ) ∩ 𝑋2 | = 1

4
. Since agent 1 receives exactly length

1

4

on 𝑋2, to guarantee proportionality, agent 1 must receive at least length
1

4
on 𝑋1. To guarantee

|M1 (𝐹 (3) ) | ≤ 1

2
, agent 1 must receive at most length

1

4
on 𝑋1. Therefore, |M1 (𝐹 (3) ) ∩ 𝑋1 | = 1

4
.

Finally, agent 2 must receive the remaining part of the cake to guarantee proportionality. □

We will define four subsets 𝑋11, 𝑋12, 𝑋21, 𝑋22 of [0, 1] that will be used for constructing other

instances later.
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Definition 3.5. 𝑋11 = M1 (𝐹 (3) ) ∩ 𝑋1, 𝑋12 = M2 (𝐹 (3) ) ∩ 𝑋1, 𝑋21 = M1 (𝐹 (3) ) ∩ 𝑋2 and 𝑋22 =

M2 (𝐹 (3) ) ∩ 𝑋2.

Proposition 3.4 implies |𝑋11 | = |𝑋12 | = |𝑋21 | = |𝑋22 | = 1

4
. It is helpful for the readers to assume

𝑋11 = [0, 0.25], 𝑋12 = (0.25, 0.5], 𝑋21 = (0.5, 0.75] and 𝑋22 = (0.75, 1] without loss of generality.
Instance 4. 𝐹 (4) = (𝑓 (4)

1
, 𝑓
(4)
2
), where

𝑓
(4)
1
(𝑥) =


1 𝑥 ∈ 𝑋11

𝜀 𝑥 ∈ 𝑋12

2𝜀 𝑥 ∈ 𝑋21

𝜀 𝑥 ∈ 𝑋22

and 𝑓
(4)
2
(𝑥) =

{
𝜀 𝑥 ∈ 𝑋1

1 𝑥 ∈ 𝑋2

.

We will show thatM(𝐹 (3) ) andM(𝐹 (4) ) output the same allocation.

Proposition 3.6. M1 (𝐹 (4) ) = 𝑋11 ∪ 𝑋21 andM2 (𝐹 (4) ) = 𝑋12 ∪ 𝑋22.

Proof. Noticing that 𝑓
(2)
2

= 𝑓
(3)
2

= 𝑓
(4)
2

, for the same reason in the proof of Proposition 3.4,

we must have |M1 (𝐹 (4) ) | ≤ 1

2
. Otherwise, agent 1 in Instance 2 will misreport his/her true value

density function 𝑓
(2)
1

to 𝑓
(4)
1

.

On the other hand, if agent 1 misreports his/her true value density function 𝑓
(4)
1

to 𝑓
(3)
1

, the

mechanismM will see the same input as 𝐹 (3) and allocate 𝑋11 ∪ 𝑋21 to agent 1. With respect to

agent 1’s true valuation 𝑓
(4)
1

, this is worth
1

4
+ 𝜀

2
. To guarantee truthfulness, agent 1 must receive a

value of at least
1

4
+ 𝜀

2
onM1 (𝐹 (4) ): 𝑣1 (M1 (𝐹 (4) )) ≥ 1

4
+ 𝜀

2
.

Given that agent 1 can receive a subset of length at most
1

2
, the maximum value agent 1 can

receive is
1

4
+ 𝜀

2
, by receiving the two subsets𝑋11 and𝑋21 that are most valuable to agent 1. Therefore,

|M1 (𝐹 (4) ) | ≤ 1

2
and 𝑣1 (M1 (𝐹 (4) )) ≥ 1

4
+ 𝜀

2
implyM1 (𝐹 (4) ) = 𝑋11 ∪ 𝑋21.

Finally, to guarantee proportionality, agent 2 must receive the remaining part of the cake. □

Instance 5. 𝐹 (5) = (𝑓 (5)
1

, 𝑓
(5)
2
), where 𝑓 (5)

1
(𝑥) = 1 for 𝑥 ∈ [0, 1] and

𝑓
(5)
2
(𝑥) =


1 − 𝜀 𝑥 ∈ 𝑋11

𝜀 𝑥 ∈ 𝑋12

1 𝑥 ∈ 𝑋2

.

We show that there is only possible output forM(𝐹 (5) ) that guarantee both truthfulness and

proportionality, withM(𝐹 (5) ) =M(𝐹 (1) ) =M(𝐹 (2) ).
Proposition 3.7. M1 (𝐹 (5) ) = 𝑋1 andM2 (𝐹 (5) ) = 𝑋2.

Proof. Firstly, we must have |M1 (𝐹 (5) ) | ≥ 1

2
to guarantee proportionality for agent 1. There-

fore, |M2 (𝐹 (5) ) | ≤ 1

2
. Secondly, if agent 2 misreports his/her value density function to 𝑓

(2)
2

, the

mechanismM will see an input exactly the same as 𝐹 (2) , and will allocate 𝑋2 to agent 2. This is

worth
1

2
with respect to agent 2’s true valuation 𝑓

(5)
2

. Therefore, we must have 𝑣2 (M2 (𝐹 (5) )) ≥ 1

2
,

for otherwise agent 2 will misreport his/her value density function to 𝑓
(2)
2

. Given that agent 2 can

receive a length of at most
1

2
, the maximum value (s)he can receive is

1

2
, by receiving 𝑋2 that is

most valuable to agent 2. Therefore,M2 (𝐹5) = 𝑋2. To guarantee proportionality for agent 1, we

must also haveM1 (𝐹 (5) ) = 𝑋1. □

Notice that, although we do not require entire allocations, the proportionality and truthfulness

constraints make the output allocations ofM for the first five instances entire.

Finally, we will consider our last instance below, and show thatM cannot be both truthful and

proportional for any allocation it outputs.
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Instance 6. 𝐹 (6) = (𝑓 (6)
1

, 𝑓
(6)
2
), where

𝑓
(6)
1
(𝑥) =


1 𝑥 ∈ 𝑋11

𝜀 𝑥 ∈ 𝑋12

2𝜀 𝑥 ∈ 𝑋21

𝜀 𝑥 ∈ 𝑋22

and 𝑓
(6)
2
(𝑥) =


1 − 𝜀 𝑥 ∈ 𝑋11

𝜀 𝑥 ∈ 𝑋12

1 𝑥 ∈ 𝑋2

.

We will analyze this instance in the following sub-section.

3.1 Analysis ofM(𝐹 (6) )
We show thatM cannot output an allocation for Instance 6 that guarantees both truthfulness and

proportionality. This will give us a contradiction and proves Theorem 3.1. To show this, we begin

by proving three propositions, and then show that they cannot be simultaneously satisfied.

Proposition 3.8. |M2 (𝐹 (6) ) ∩ 𝑋2 | ≤ 1

4
+ 1

4
𝜀.

Proof. Suppose this is not the case: |M2 (𝐹 (6) ) ∩ 𝑋2 | > 1

4
+ 1

4
𝜀. Consider Instance 4. By Proposi-

tion 3.6, we haveM2 (𝐹 (4) ) = 𝑋12 ∪𝑋22, and agent 2 can receive value
1

4
+ 1

4
𝜀 (with respect to 𝑓

(4)
2

).

By misreporting from 𝑓
(4)
2

to 𝑓
(6)
2

, the mechanismM will see input 𝐹 (6) and allocateM2 (𝐹 (6) ) to
agent 2 with |M2 (𝐹 (6) ) ∩ 𝑋2 | > 1

4
+ 1

4
𝜀. With respect to agent 2’s true value density function 𝑓

(4)
2

in Instance 4, this is worth more than
1

4
+ 1

4
𝜀. Therefore,M cannot be truthful. □

Proposition 3.9. 𝑣1 (M1 (𝐹 (6) )) ≥ 1

4
+ 1

4
𝜀 with respect to 𝑓 (6)

1
.

Proof. Suppose agent 1 misreports his/her true value density function 𝑓
(6)
1

to 𝑓
(5)
1

. The mech-

anismM will see input 𝐹 (5) , which will allocate 𝑋1 to agent 1 by Proposition 3.7. This is worth

1

4
+ 1

4
𝜀 to agent 1. Therefore, to guarantee truthfulness, we must have 𝑣1 (M1 (𝐹 (6) )) ≥ 1

4
+ 1

4
𝜀. □

Proposition 3.10. 𝑣2 (M2 (𝐹 (6) )) ≥ 3

8
with respect to 𝑓 (6)

2
.

Proof. We have 𝑣2 ( [0, 1]) = 1

4
((1 − 𝜀) + 𝜀) + 1

2
× 1 = 3

4
. The proposition follows by the propor-

tionality of agent 2. □

We first give an intuitive argument to show that Proposition 3.8, 3.9 and 3.10 cannot be all

satisfied. In 𝐹 (6) , agent 2 has a value equal to or approximately equal to 1 on each of the three

segments 𝑋11, 𝑋21 and 𝑋22 and has a negligible value on 𝑋12. Proposition 3.8 indicates that (s)he can

receive at most (a little bit more than) half of 𝑋21 ∪ 𝑋22. To guarantee proportionality (indicated

by Proposition 3.10), (s)he must receive approximately half of 𝑋11. On the other hand, by our

construction of 𝑓
(6)
1

, it is easy to see that Proposition 3.9 indicates that almost the entire 𝑋11 needs

to be given to agent 1. This gives a contradiction.

Formally, Proposition 3.8 implies 𝑣2 (M2 (𝐹 (6) ) ∩ 𝑋2) ≤ 1

4
+ 1

4
𝜀. Proposition 3.10 then indicates

𝑣2 (M2 (𝐹 (6) ) ∩ 𝑋1) ≥ 1

8
− 1

4
𝜀. Even if the entire 𝑋12 is allocated to agent 2 (which is worth

1

4
𝜀), we

still have ���M2 (𝐹 (6) ) ∩ 𝑋11

��� ≥ 1

8
− 1

4
𝜀 − 1

4
𝜀

1 − 𝜀 =
1 − 4𝜀
8 − 8𝜀 .

For agent 1, we must then have���M1 (𝐹 (6) ) ∩ 𝑋11

��� ≤ 1

4

− 1 − 4𝜀
8 − 8𝜀 =

1 + 2𝜀
8 − 8𝜀 .
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To find an upper bound for 𝑣1 (M1 (𝐹 (6) )), suppose agent 1 receives all of 𝑋12, 𝑋21 and 𝑋22. Even in

this case, we have the following upper bound for 𝑣1 (M1 (𝐹 (6) )):

𝑣1 (M1 (𝐹 (6) )) ≤
1 + 2𝜀
8 − 8𝜀 · 1 +

1

4

· 𝜀 + 1

4

· 2𝜀 + 1

4

· 𝜀 = 1 + 2𝜀
8 − 8𝜀 + 𝜀.

Taking 𝜀 → 0, the limit of the above upper bound is
1

8
. Thus, 𝑣1 (M1 (𝐹 (6) )) < 1

4
+ 1

4
𝜀 for sufficiently

small 𝜀, and Proposition 3.9 cannot be satisfied.

This concludes the proof of Theorem 3.1.

3.2 Truthful, Approximately Proportional Mechanisms
We have just proved that a truthful, proportional mechanism does not exist. To deploy cake cutting

mechanisms in practice, it leaves us to consider relaxations on truthfulness or proportionality.

In the theorem below, we show the non-existence of approximately proportional mechanisms if

we do not relax the dominant strategy truthfulness. In the next three sections, we will consider

some relaxations on truthfulness and provide some mechanisms satisfying the relaxed truthfulness

(while guaranteeing fairness).

Theorem 3.11. There does not exist a truthful and 0.974031-approximately proportional mechanism,
even when all of the followings hold:
• there are two agents;
• each agent’s value density function is piecewise-constant;
• each agent is hungry: each 𝑓𝑖 satisfies 𝑓𝑖 (𝑥) > 0 for any 𝑥 ∈ [0, 1];
• the mechanism needs not to be entire.

The proof of the above theorem is similar to the proof of Theorem 3.1, with the addition of many

approximation analyses. We defer it to Appendix B.

The existence of truthful and approximately proportional mechanisms with smaller approxima-

tion ratios is still an open problem, and we will discuss more about it in Sect. 7.

4 ONWEAKER TRUTHFUL GUARANTEES, RISK-AVERSE TRUTHFULNESS
We have seen in the previous section that standard dominant strategy truthfulness cannot be

guaranteed if wewant a proportional mechanism or even an approximately proportional mechanism

with a sufficiently large approximation ratio. In this section, wewill consider weaker truthful criteria.

One natural idea of relaxing truthfulness is to consider approximation on truthfulness, where an
agent will not receive a utility that is more than 𝛼 times the utility (s)he would have received by

truth-telling. However, such a notion is unconvincing in the game theory aspect, although it may be

compatible in the spirit of approximation algorithm. An agent will still misreport his/her valuation

under an 𝛼-approximately truthful mechanism. On the other hand, there may be other much more

stable equilibria than the truth-telling profile. Agents’ behaviors are still largely unpredictable under

an 𝛼-approximately truthful mechanism. Therefore, we seek some other relaxation on truthfulness.

A common truthful criterion is to require that the truth-telling profile forms a Nash Equilibrium.

In many applications, this is a significantly weaker guarantee than dominant strategy truthfulness.

However, in our cake cutting case with direct revelation mechanisms, this truthful criteria is

equivalent to the dominant strategy truthfulness, as the following theorem shows.

Theorem 4.1. If a mechanismM satisfies that agents’ strategies of truthfully reporting their value
density functions form a Nash equilibrium, thenM is (dominant strategy) truthful.

Proof. SupposeM satisfying this property is not dominant strategy truthful. Given a valuation

profile (𝑓1, . . . , 𝑓𝑛), there exist an agent 𝑖 and 𝑛 − 1 value density functions 𝑓 ′
1
, . . . , 𝑓 ′𝑖−1, 𝑓

′
𝑖+1, . . . , 𝑓

′
𝑛
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reported by the other 𝑛 − 1 agents, such that reporting certain 𝑓 ′𝑖 is more beneficial for agent 𝑖 than

truthfully reporting 𝑓𝑖 . Now, consider a different valuation profile (𝑓 ′
1
, . . . , 𝑓 ′𝑖−1, 𝑓𝑖 , 𝑓

′
𝑖+1, . . . , 𝑓

′
𝑛 ). In

this new profile, for each 𝑗 ≠ 𝑖 , the function 𝑓 ′𝑗 , being the reported function in the previous case,

becomes the true valuation for agent 𝑗 . In this new setting, if the remaining 𝑛 − 1 agents truthfully
report their value density functions, which are 𝑓 ′

1
, . . . , 𝑓 ′𝑖−1, 𝑓

′
𝑖+1, . . . , 𝑓

′
𝑛 , agent 𝑖’s best response is to

report 𝑓 ′𝑖 instead of his/her true valuation 𝑓𝑖 (as we have seen in the first setting). This indicates

that truth-telling is not a Nash equilibrium, which is a contradiction. □

Even though we do not have any progress on many standard truthful guarantees in game theory,

there are still mechanisms that can achieve “a certain degree of truthfulness” in practice. Most

notably, the I-cut-you-choose protocol achieves some kind of truthfulness. The protocol works for

proportional/envy-free cake cutting with two agents: agent 1 find a point 𝑥 on the cake [0, 1] such
that 𝑣1 ( [0, 𝑥]) = 𝑣1 ( [𝑥, 1]); agent 2 is allocated one of [0, 𝑥] and [𝑥, 1] that is more valuable to

him/her, and the other piece is allocated to agent 1. It is easy to see that agent 2’s dominant strategy

is truth-telling: (s)he has no control over the position of 𝑥 , and truth-telling can ensure (s)he gets a

piece with a larger value. On the other hand, although it is not a dominant strategy for agent 1 to

tell the truth, agent 1 still does not have the incentive to lie in the case (s)he has no knowledge of

agent 2’s valuation. If (s)he reports a value density function that results in a different position of 𝑥 ,

there is always a risk that (s)he will receive a piece with a value less than 1/2 of the entire cake
(i.e., less than the value guaranteed by proportionality).

There are two reasons behind agent 1’s truth-telling incentive. Firstly, as mentioned, (s)he does

not have prior knowledge of agent 2’s valuations. Secondly, (s)he is a risk-averse agent: whenever

there is a risk of receiving a value that is less than what (s)he would have received by truth-telling,

(s)he prefers to avoid the risk.

Motivated by this example, we define and consider a new truthful criterion: the risk-averse
truthfulness.

Definition 4.2. A mechanismM is risk-averse truthful if, for each agent 𝑖 with value density

function 𝑓𝑖 and for any 𝑓 ′𝑖 , either one of the following holds:

(1) for any 𝑓1, . . . , 𝑓𝑖−1, 𝑓𝑖+1, . . . , 𝑓𝑛 ,

𝑣𝑖 (M𝑖 (𝑓1, . . . , 𝑓𝑖−1, 𝑓𝑖 , 𝑓𝑖+1, . . . , 𝑓𝑛)) ≥ 𝑣𝑖 (M𝑖 (𝑓1, . . . , 𝑓𝑖−1, 𝑓 ′𝑖 , 𝑓𝑖+1, . . . , 𝑓𝑛));

(2) there exist 𝑓1, . . . , 𝑓𝑖−1, 𝑓𝑖+1, . . . , 𝑓𝑛 such that

𝑣𝑖 (M𝑖 (𝑓1, . . . , 𝑓𝑖−1, 𝑓 ′𝑖 , 𝑓𝑖+1, . . . , 𝑓𝑛)) < 𝑣𝑖 (M𝑖 (𝑓1, . . . , 𝑓𝑖−1, 𝑓𝑖 , 𝑓𝑖+1, . . . , 𝑓𝑛)).

In other words, a mechanism is risk-averse truthful if either an agent’s misreporting is non-

beneficial, or the misreporting can potentially cause the agent to receive a piece with a value that

is less than what (s)he would have received by truth-telling.

The I-cut-you-choose protocol can achieve a stronger truthful property: if agent 1 modifies the

cut-point 𝑥 by misreporting his/her value density function, there is always a chance that (s)he will

receive a piece with a value that is even less than his/her proportional value. Motivated by this, we

define a stronger truthful notion based on the fairness criterion of proportionality.

Definition 4.3. A mechanismM is proportionally risk-averse truthful ifM is proportional and,

for each agent 𝑖 with value density function 𝑓𝑖 and for any 𝑓 ′𝑖 , either one of the following holds:

(1) for any 𝑓1, . . . , 𝑓𝑖−1, 𝑓𝑖+1, . . . , 𝑓𝑛 ,

𝑣𝑖 (M𝑖 (𝑓1, . . . , 𝑓𝑖−1, 𝑓𝑖 , 𝑓𝑖+1, . . . , 𝑓𝑛)) ≥ 𝑣𝑖 (M𝑖 (𝑓1, . . . , 𝑓𝑖−1, 𝑓 ′𝑖 , 𝑓𝑖+1, . . . , 𝑓𝑛));
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(2) there exist 𝑓1, . . . , 𝑓𝑖−1, 𝑓𝑖+1, . . . , 𝑓𝑛 such that

𝑣𝑖 (M𝑖 (𝑓1, . . . , 𝑓𝑖−1, 𝑓 ′𝑖 , 𝑓𝑖+1, . . . , 𝑓𝑛)) <
1

𝑛
𝑣𝑖 ( [0, 1]).

Brams et al. [16] also define a truthful notion in the spirit of agents’ risk-averseness and uncer-

tainty about other agents’ valuations. Their notion is weaker than our risk-averse truthfulness (and

so further weaker than the proportional risk-averse truthfulness). In Appendix C, we will discuss

the difference between our truthful notions and theirs, and we will also point out a minor mistake

made in their paper.

We remark that there are other truthful notions that relax the dominant-strategy truthfulness

with the consideration of agents’ uncertainty about each other’s utility. For example, Troyan and

Morrill [44] define a truthful notion called “not obviously manipulatable” which requires that

manipulation should not be strictly better off in both the worst case and the best case. Besides

many technical differences, Troyan and Morrill’s notion is also conceptually different from our

(proportionally) risk-averse truthfulness. The (proportionally) risk-averse truthfulness puts more

focus on agents’ risk-averseness, whereas more focus is put on the difficulty of finding a deviation

in Troyan and Morrill’s notion. Comparing the strength of our notion with Troyan and Morrill’s,

neither one implies the other.

Finally, we remark that a common Bayesian model captures the uncertainty of other agents’

private information: define a probability distribution from which an agent believes that the other

agents’ private information is drawn (typically, this distribution depends on the information this

agent has). This is a typical setting in the auction theory (e.g., an agent believes that another agent’s

valuation on an item is drawn uniformly at random from [0, 1]). However, in our case, we do not

see any natural way to define a probability distribution over piecewise-constant functions.

5 RISK-AVERSE TRUTHFUL ENVY-FREE MECHANISMS
There exists a simple algorithm that outputs envy-free allocations for 𝑛 agents with piecewise-

constant value density functions. The algorithm first collects all the points of discontinuity from all

agents. This partitions the cake into multiple intervals where each agent’s value density function

is uniform on each of these intervals. Then, the algorithm uniformly allocates each interval to

all agents. The output allocation (𝐴1, . . . , 𝐴𝑛) of this algorithm satisfies 𝑣𝑖 (𝐴 𝑗 ) = 1

𝑛
𝑣𝑖 ( [0, 1]) (this

property of an allocation is called perfect), which is clearly envy-free. However, to make the

algorithm deterministic, we need to specify a left-to-right order of the 𝑛 agents on how each

interval is allocated. The algorithm is described in Mechanism 1.

Algorithm 1: A simple envy-free cake cutting algorithm

1 let 𝑋𝑖 be the set of all points of discontinuity for 𝑓𝑖 ;

2 let 𝑋 =
⋃𝑛

𝑖=1𝑋𝑖 ;

3 let 𝑋 = {𝑥1, . . . , 𝑥𝑚−1} be sorted by ascending order, and let 𝑥0 = 0, 𝑥𝑚 = 1;

4 initialize 𝐴𝑖 = ∅ for each 𝑖 = 1, . . . , 𝑛;

5 for each 𝑗 = 0, 1, . . . ,𝑚 − 1 do
6 for each agent 𝑖 = 1, . . . , 𝑛 do
7 𝐴𝑖 ← 𝐴𝑖 ∪

[
𝑥 𝑗 + 𝑖−1

𝑛
(𝑥 𝑗+1 − 𝑥 𝑗 ), 𝑥 𝑗 + 𝑖

𝑛
(𝑥 𝑗+1 − 𝑥 𝑗 )

)
;

8 end
9 end

10 return allocation (𝐴1, . . . , 𝐴𝑛)
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However, Mechanism 1 is not even risk-averse truthful.

Theorem 5.1. Mechanism 1 is not risk-averse truthful.

Proof. Consider 𝑓1 such that 𝑓1 (𝑥) = 1 for 𝑥 ∈ [0, 1
𝑛
) and 𝑓1 (𝑥) = 0.5 for 𝑥 ∈ [ 1

𝑛
, 1], and

consider 𝑓 ′
1
(𝑥) = 1 for 𝑥 ∈ [0, 1]. Let M be the mechanism. We aim to show that, 1) there

exist 𝑓2, . . . , 𝑓𝑛 such that 𝑣1 (M1 (𝑓 ′1 , 𝑓2, . . . , 𝑓𝑛)) > 𝑣1 (M1 (𝑓1, 𝑓2, . . . , 𝑓𝑛)), and 2) for any 𝑓2, . . . , 𝑓𝑛 ,

𝑣1 (M1 (𝑓 ′1 , 𝑓2, . . . , 𝑓𝑛)) ≥ 𝑣1 (M1 (𝑓1, 𝑓2, . . . , 𝑓𝑛)). That is, misreporting 𝑓1 to 𝑓 ′
1
is sometimes more

beneficial and always no harm.

To show 1), consider 𝑓2 (𝑥) = · · · = 𝑓𝑛 (𝑥) = 1 for 𝑥 ∈ [0, 1]. If agent 1 truthfully reports 𝑓1, (s)he

will receive [0, 1

𝑛2
) ∪ [ 1

𝑛
, 1
𝑛
+ 𝑛−1

𝑛2
), which is worth

1

𝑛2
+ 𝑛−1

2𝑛2
. If agent 1 reports 𝑓 ′

1
, the mechanism

will see 𝑛 uniform functions, and allocation [0, 1
𝑛
) to agent 1, which is worth

1

𝑛
, which is more than

1

𝑛2
+ 𝑛−1

2𝑛2
.

To show 2), consider any 𝑓2, . . . , 𝑓𝑛 . Suppose agent 1 reports 𝑓
′
1
. Let 𝑋 be defined in Step 2 and 3

of the mechanism with respect to 𝑓 ′
1
, 𝑓2, . . . , 𝑓𝑛 . Agent 1 always receives the leftmost 1/𝑛 fraction of

each [𝑥 𝑗 , 𝑥 𝑗+1). Since 𝑓1 is monotonically decreasing, this is worth at least 1/𝑛 of 𝑣 ( [𝑥 𝑗 , 𝑥 𝑗+1)), and
agent 1 receives at least his/her proportional share overall. On the other hand, if agent 1 truthfully

reports 𝑓1, (s)he will always receive exactly his/her proportional share, which is weakly less than

what (s)he would receive by reporting 𝑓 ′
1
. □

The reason for Mechanism 1 not being risk-averse truthful is that an agent can “delete” a point of

continuity to merge two intervals [𝑥 𝑗 , 𝑥 𝑗+1) and [𝑥 𝑗+1, 𝑥 𝑗+2). This may be more beneficial if his/her

value is higher on [𝑥 𝑗 , 𝑥 𝑗+1) (or [𝑥 𝑗+1, 𝑥 𝑗+2)) and (s)he knows that the mechanism will allocate a

piece on the very left (or very right) of [𝑥 𝑗 , 𝑥 𝑗+2). Therefore, it is the deterministic left-to-right

order on each interval that compromises the truthfulness. It is easy to randomize Mechanism 1 such

that Mechanism 1 is truthful in expectation, meaning that an expected utility optimizing agent’s

dominant strategy is truth-telling. To achieve this, we just need to partition each [𝑥 𝑗 , 𝑥 𝑗+1) evenly
into 𝑛 pieces and allocate these 𝑛 pieces to the 𝑛 agents by a random perfect matching. This is

essentially the Mechanism proposed by Mossel and Tamuz [34].

We propose a deterministic proportionally risk-averse truthful and envy-free mechanism that

uses similar ideas. The mechanism is the same as Mechanism 1, except that the left-to-right order on

each interval [𝑥 𝑗 , 𝑥 𝑗+1) depends on the index 𝑗 . Intuitively, if an agent tries to merge two intervals,

(s)he does not know where exactly his/her 1/𝑛 fraction of [𝑥 𝑗 , 𝑥 𝑗+1) is, as (s)he does not know other

agents’ value density functions. This makes it possible that (s)he ends up receiving a portion where

(s)he has less value. The mechanism is shown in Mechanism 2.

Algorithm 2: A risk-averse truthful envy-free cake cutting mechanism

1 let 𝑋𝑖 be the set of all points of discontinuity for 𝑓𝑖 ;

2 let 𝑋 =
⋃𝑛

𝑖=1𝑋𝑖 ;

3 let 𝑋 = {𝑥1, . . . , 𝑥𝑚−1} be sorted by ascending order, and let 𝑥0 = 0, 𝑥𝑚 = 1;

4 initialize 𝐴𝑖 = ∅ for each 𝑖 = 1, . . . , 𝑛;

5 for each 𝑗 = 0, 1, . . . ,𝑚 − 1 do
6 for each agent 𝑖 do
7 𝐴𝑖 ← 𝐴𝑖 ∪

[
𝑥 𝑗 + 𝑖+𝑗−1 mod 𝑛

𝑛
(𝑥 𝑗+1 − 𝑥 𝑗 ), 𝑥 𝑗 + (𝑖+𝑗−1 mod 𝑛)+1

𝑛
(𝑥 𝑗+1 − 𝑥 𝑗 )

)
;

8 end
9 end

10 return allocation (𝐴1, . . . , 𝐴𝑛)
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Theorem 5.2. Mechanism 2 is proportionally risk-averse truthful and envy-free.

Proof. The envy-freeness is trivial. We will focus on proportional risk-averse truthfulness. The

part of proportionality is also trivial, as an entire envy-free allocation is always proportional and

Mechanism 2 is entire.

We focus on agent 1 without loss of generality. Let 𝑓1 be agent 1’s true value density function.

Consider an arbitrary 𝑓 ′
1
that agent 1 reports. Let 𝑋1 and 𝑋

′
1
be the sets of all points of discontinuity

for 𝑓1 and 𝑓 ′
1
respectively.

Suppose 𝑋1 ⊆ 𝑋 ′
1
. It is easy to see that agent 1 will still get a value of

1

𝑛
𝑣1 ( [0, 1]) by reporting

𝑓 ′
1
. This is because any subdivision of an interval where agent 1 has a uniform value gives only

smaller intervals each of which agent 1 has a uniform value. This kind of misreporting is captured

by 1 of Definition 4.3.

Suppose𝑋1 ⊈ 𝑋 ′
1
. Pick an arbitrary 𝑡 ∈ 𝑋1\𝑋 ′1. Assumewithout loss of generality that lim

𝑥→𝑡−
𝑓 (𝑥) <

lim

𝑥→𝑡+
𝑓 (𝑥). Consider a sufficiently small 𝜀 > 0 such that [𝑡−𝜀, 𝑡+(𝑛−1)𝜀] do not contain any points in

𝑋1∪𝑋 ′1\{𝑡}. We can construct 𝑓2, . . . , 𝑓𝑛 such that 1)
⋃𝑛

𝑖=2𝑋𝑖 contains𝑋1∪𝑋 ′1∪{𝑡−𝜀, 𝑡+(𝑛−1)𝜀}\{𝑡},
2)

⋃𝑛
𝑖=2𝑋𝑖 do not intersect the open interval (𝑡 − 𝜀, 𝑡 + (𝑛 − 1)𝜀), and 3) 𝑡 − 𝜀 is the 𝑗-th point from

left to right with 𝑗 being a multiple of 𝑛. By our mechanism, agent 1 will receive [𝑡 − 𝜀, 𝑡) on the

𝑗-th interval [𝑡 − 𝜀, 𝑡 + (𝑛 − 1)𝜀), which is worth less than
1

𝑛
𝑣1 ( [𝑡 − 𝜀, 𝑡 + (𝑛 − 1)𝜀)). Agent 1 will

receive value exactly
1

𝑛
𝑣1 ( [0, 1] \ [𝑡 − 𝜀, 𝑡 + (𝑛 − 1)𝜀)) on the remaining part of the cake. Therefore,

the overall value agent 1 receives is below the proportional value. We have shown that this type

of misreporting may cause agent 1’s received value to be less than the proportional value, which

corresponds to 2 of Definition 4.3. □

6 RISK-AVERSE TRUTHFUL PROPORTIONAL MECHANISMSWITH CONNECTED
PIECES

We have seen that Mechanism 2 is proportionally risk-averse truthful. However, each agent may

receive a union of quite many intervals instead of a single interval. This is undesirable in many

applications where people want a contiguous piece of resource, e.g., dividing a piece of land, or

allocating meeting time slots. In this section, we are looking for proportionally risk-averse truthful

mechanisms that satisfy the connected pieces property. That is, we require that each agent must

receive a connected interval of the cake.

Many existing algorithms output proportional allocations with connected pieces. Two notable

ones are the moving-knife procedure [25] and the Even-Paz algorithm [28]. We will see in this section

that both algorithms are not proportionally risk-averse truthful. In particular, the moving-knife

procedure is not even risk-averse truthful. We conclude this section by proposing a proportionally

risk-averse truthful mechanism with connected pieces.

Moving-knife (Dubins-Spanier) procedure. Let 𝑎𝑖 = 1

𝑛
𝑣𝑖 ( [0, 1]) be agent 𝑖’s proportional value.

The moving-knife procedure marks for each agent 𝑖 a point 𝑥𝑖 such that [0, 𝑥𝑖 ) is worth exactly 𝑎𝑖
to agent 𝑖 . Then, the algorithm finds the smallest value 𝑥𝑖∗ among 𝑥1, . . . , 𝑥𝑛 , and allocates [0, 𝑥𝑖∗ )
to agent 𝑖∗. Next, for the remaining part of the cake [𝑥𝑖∗ , 1], the algorithm marks for each of the

𝑛 − 1 remaining agents a point 𝑥 ′𝑖 such that [𝑥𝑖∗ , 𝑥 ′𝑖 ) is worth exactly 𝑎𝑖 to agent 𝑖 . The algorithm

then finds the smallest value 𝑥𝑖† among those 𝑛 − 1 𝑥 ′𝑖 s, and allocates [𝑥𝑖∗ , 𝑥𝑖† ) to agent 𝑖†. This is
repeated until the (𝑛−1)-th agent is allocated an interval, and then the last agent gets the remaining

part of the cake. It is easy to verify that each of the first 𝑛 − 1 agents receives an interval that is

worth exactly his/her proportional value 𝑎𝑖 , while the last agent may receive more than his/her

proportional value.
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Even-Paz algorithm. The Even-Paz algorithm is a divide-and-conquer-based algorithm. For each

agent 𝑖 , Even-Paz algorithm finds a point 𝑥𝑖 such that 𝑣𝑖 ( [0, 𝑥𝑖 ]) = ⌊𝑛
2
⌋𝑣𝑖 ( [0, 1]). It then find the

median 𝑥∗ for 𝑥1, . . . , 𝑥𝑛 . Let 𝐿 be the set of agents 𝑖 with 𝑥𝑖 < 𝑥∗ and 𝑅 be the set of agents 𝑖 with

𝑥𝑖 ≥ 𝑥∗. Since each agent 𝑖 in 𝐿 believes 𝑣𝑖 ( [0, 𝑥∗]) ≥ ⌊𝑛
2
⌋𝑣𝑖 ( [0, 1]) and there are ⌊𝑛

2
⌋ agents in 𝐿,

there exists an allocation of [0, 𝑥∗] to agents in 𝐿 such that each agent 𝑖 receives at least his/her

proportional value
1

𝑛
𝑣𝑖 ( [0, 1]). For the similar reasons, there exists an allocation of (𝑥∗, 1] to agents

in 𝑅 such that each agent 𝑖 receives at least his/her proportional value 1

𝑛
𝑣𝑖 ( [0, 1]). The algorithm

then solves these two problems recursively. It is also easy to prove that the Even-Paz algorithm

always outputs proportional allocations.

To show that both algorithms are not proportionally risk-averse truthful. We first define the

following two value density functions.

ℓ (𝑛) (𝑥) =


3

2
𝑥 ∈

[
0, 1

2𝑛

)
1

2
𝑥 ∈

[
1

2𝑛
, 1
𝑛

)
1 𝑥 ∈

[
1

𝑛
, 1
] 𝑟 (𝑛) (𝑥) =


1 𝑥 ∈

[
0, 1 − 1

𝑛

)
1

2
𝑥 ∈

[
1 − 1

𝑛
, 1 − 1

2𝑛

)
3

2
𝑥 ∈

[
1 − 1

2𝑛
, 1
] (2)

Notice that

∫
1

0
ℓ (𝑛) (𝑥)𝑑𝑥 =

∫
1

0
𝑟 (𝑛) (𝑥)𝑑𝑥 = 1. The following lemma shows that any allocation

that is proportional in either ℓ (𝑛) or 𝑟 (𝑛) is also proportional in the uniform value density function.

Lemma 6.1. Let 𝑓 (𝑥) = 1 for 𝑥 ∈ [0, 1]. For any interval 𝐼 such that
∫
𝐼
ℓ (𝑛) (𝑥)𝑑𝑥 ≥ 1

𝑛
, we have∫

𝐼
𝑓 (𝑥)𝑑𝑥 ≥ 1

𝑛
. For any interval 𝐼 such that

∫
𝐼
𝑟 (𝑛) (𝑥)𝑑𝑥 ≥ 1

𝑛
, we have

∫
𝐼
𝑓 (𝑥)𝑑𝑥 ≥ 1

𝑛
.

Proof. We only prove the lemma for

∫
𝐼
ℓ (𝑛) (𝑥)𝑑𝑥 ≥ 1

𝑛
, as the part for

∫
𝐼
𝑟 (𝑛) (𝑥)𝑑𝑥 ≥ 1

𝑛
is similar.

It is straightforward to see that

∫
𝐼
ℓ (𝑛) (𝑥)𝑑𝑥 = 1

𝑛
implies |𝐼 | ≥ 1

𝑛
. In particular, |𝐼 | = 1

𝑛
if the left

endpoint of 𝐼 belongs to {0} ∪ [ 1
𝑛
, 1 − 1

𝑛
], and |𝐼 | > 1

𝑛
if the left endpoint of 𝐼 belongs to (0, 1

𝑛
). For

|𝐼 | ≥ 1

𝑛
, we have

∫
𝐼
𝑓 (𝑥)𝑑𝑥 ≥ 1

𝑛
. If

∫
𝐼
ℓ (𝑛) (𝑥)𝑑𝑥 > 1

𝑛
, there exists 𝐼 ′ ⊆ 𝐼 such that

∫
𝐼 ′
ℓ (𝑛) (𝑥)𝑑𝑥 = 1

𝑛
.

By our previous analysis, |𝐼 ′ | ≥ 1

𝑛
. We have

∫
𝐼
𝑓 (𝑥)𝑑𝑥 ≥

∫
𝐼 ′
𝑓 (𝑥)𝑑𝑥 ≥ 1

𝑛
. □

Theorem 6.2. The moving-knife procedure is not risk-averse truthful.

Proof (Sketch). Let 𝑓1 (𝑥) = 1 for 𝑥 ∈ [0, 1] be the true value density function for agent 1.

Lemma 6.1 guarantees that, in every circumstance, misreporting ℓ (𝑛) can always ensure propor-

tionality in terms of 𝑓1. In the proof of Lemma 6.1, we have seen that misreporting ℓ (𝑛) is more

beneficial in the case the left endpoint of agent 1’s allocated interval is located in (0, 1
𝑛
). These

prove that the mechanism is not proportionally risk-averse truthful. To show the mechanism is

not even risk-averse truthful, we can exploit the property that the moving-knife procedure always

allocates an interval that is just enough to guarantee proportionality for the first 𝑛 − 1 agents. The
details are in the full proof deferred to Appendix D. □

Theorem 6.3. The Even-Paz algorithm is not proportionally risk-averse truthful.

Proof (Sketch). Let 𝑓1 (𝑥) = 1 for 𝑥 ∈ [0, 1] be the true value density function for agent 1. By

the similar ideas in the proof of Theorem 6.2, we can show that reporting 𝑟 (𝑛) can still ensure

proportionality while sometimes beingmore beneficial. The full proof is deferred to Appendix D. □

To conclude this section, we present a mechanism that is proportionally risk-averse truthful. In

particular, if we require the entire allocations, it is proportionally risk-averse truthful for hungry

agents. The mechanism is shown in Mechanism 3. Later, we will show that we can modify the

mechanism by a little bit to make it proportionally risk-averse truthful (without assuming the

agents are hungry) if we do not require entire allocations (while still guaranteeing proportionality

and connected pieces).
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Algorithm 3: A proportionally risk-averse truthful cake cutting mechanism with connected

pieces

1 for each 𝑓𝑖 , find 𝑥
(𝑖)
1
, . . . , 𝑥

(𝑖)
𝑛−1 such that

∫ 𝑥
(𝑖 )
𝑗+1

𝑥
(𝑖 )
𝑗

𝑓𝑖 (𝑥)𝑑𝑥 = 1

𝑛

∫
1

0
𝑓𝑖 (𝑥)𝑑𝑥 for each

𝑗 = 0, 1, . . . , 𝑛 − 1, where 𝑥 (𝑖)
0

= 0 and 𝑥
(𝑖)
𝑛 = 1;

2 𝑐0 ← 0;

3 Unallocated← {1, . . . , 𝑛} ; // the set of agents who have not been allocated

4 for each 𝑗 = 1, . . . , 𝑛 − 1 do
5 𝑖 𝑗 ← argmin𝑖∈Unallocated{𝑥 (𝑖)𝑗 };
6 𝑐 𝑗 ← 𝑥

(𝑖 𝑗 )
𝑗

;

7 allocate [𝑐 𝑗−1, 𝑐 𝑗 ) to agent 𝑖 𝑗 ;

8 Unallocated← Unallocated \ {𝑖 𝑗 };
9 end

10 allocate the remaining unallocated interval to the one remaining agent in Unallocated.

Theorem 6.4. Mechanism 3 is entire and proportional and always outputs allocations with connected
pieces.

Proof. It is trivial that the mechanism is entire and always outputs allocations with connected

pieces. It remains to show the proportionality. It suffices to show that, in each iteration 𝑗 , we have

[𝑥 (𝑖 𝑗 )
𝑗−1 , 𝑥

(𝑖 𝑗 )
𝑗
) ⊆ [𝑐 𝑗−1, 𝑐 𝑗 ) (notice that [𝑥

(𝑖 𝑗 )
𝑗−1 , 𝑥

(𝑖 𝑗 )
𝑗
) is worth exactly the proportional value for agent

𝑖 𝑗 ). Since 𝑥
(𝑖 𝑗 )
𝑗

= 𝑐 𝑗 , it suffices to show that 𝑥
(𝑖 𝑗 )
𝑗−1 ≥ 𝑐 𝑗−1. In the ( 𝑗 − 1)-th iteration, agent 𝑖 𝑗 is

still in the set Unallocated. Since 𝑖 𝑗−1 is the agent 𝑖 in Unallocated with minimum 𝑥
(𝑖)
𝑗−1, we have

𝑥
(𝑖 𝑗 )
𝑗−1 ≥ 𝑥

(𝑖 𝑗−1)
𝑗−1 = 𝑐 𝑗−1. □

Theorem 6.5. Mechanism 3 is proportionally risk-averse truthful for hungry agents.

Proof. Without loss of generality, we consider the potential misreport for agent 1. Let 𝑓1 be

agent 1’s true value density function, and consider an arbitrary 𝑓 ′
1
. If the values for 𝑥

(1)
1

, . . . , 𝑥
(1)
𝑛−1 (in

Step 1 of the mechanism) are the same for 𝑓1 and 𝑓 ′
1
, the mechanism will output the same allocation

for 𝑓1 and 𝑓 ′
1
. In this case, reporting 𝑓 ′

1
is not strictly more beneficial. We will conclude the proof by

showing that, if the values for 𝑥
(1)
1

, . . . , 𝑥
(1)
𝑛−1 are not the same for 𝑓1 and 𝑓 ′

1
, there exists 𝑓2, . . . , 𝑓𝑛

such that agent 1 will receive an interval with value less than the proportional value (with respect

to the true valuation 𝑓1).

Suppose 𝑗∗ is the minimum index such that 𝑥
(1)
𝑗∗ is not the same for 𝑓1 and 𝑓 ′

1
. Let 𝑦 be the value

of 𝑥
(1)
𝑗∗ for 𝑓1 and 𝑦

′
be the value of 𝑥

(1)
𝑗∗ for 𝑓 ′

1
. We consider two cases: 𝑦 ′ < 𝑦 and 𝑦 ′ > 𝑦. Let 𝜀 > 0

be a sufficiently small number.

Suppose𝑦 ′ < 𝑦. We can construct 𝑓2, . . . , 𝑓𝑛 such that 1) for each 𝑗 = 1, . . . , 𝑗∗−1, 𝑐 𝑗 = 𝑥
(1)
𝑗
−𝜀, and

2) 𝑐 𝑗∗ = 𝑦 ′. In this case, agent 1 will receive [𝑥 (1)
𝑗∗−1 − 𝜀,𝑦 ′). When 𝜀 → 0, this interval converges to

[𝑥 (1)
𝑗∗−1, 𝑦

′], which is a proper subset of [𝑥 (1)
𝑗∗−1, 𝑦). We know that [𝑥 (1)

𝑗∗−1, 𝑦) is just enough to guarantee
the proportionality for agent 1. Agent 1 receives an interval with a value less than the proportional

value by reporting 𝑓 ′
1
, if 𝜀 is small enough.
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Suppose 𝑦 ′ > 𝑦. Since each of the following intervals [𝑥 (1)
0

, 𝑥
(1)
1
), . . . , [𝑥 (1)

𝑗∗−2, 𝑥
(1)
𝑗∗−1) is worth

exactly
1

𝑛
𝑣1 ( [0, 1]) and the interval [𝑥 (1)

𝑗∗−1, 𝑦
′) is worth strictly more than

1

𝑛
𝑣1 ( [0, 1]), the interval

[𝑦 ′, 1] is worth less than
𝑛−𝑗∗
𝑛

𝑣1 ( [0, 1]). It is possible to find 𝑦 𝑗∗+1, . . . , 𝑦𝑛−1 such that [𝑦 𝑗 , 𝑦 𝑗+1) is
worth strictly less than

1

𝑛
𝑣1 ( [0, 1]) for each 𝑗 = 𝑗∗, . . . , 𝑛 − 1, where we let 𝑦 𝑗∗ = 𝑦 ′ and 𝑦𝑛 = 1. Now

we construct 𝑓2, . . . , 𝑓𝑛 such that 1) 𝑐 𝑗 = 𝑥
(1)
𝑗
− 𝜀 for each 𝑗 = 1, . . . , 𝑗∗ − 1, 2) 𝑐 𝑗∗ = 𝑦 ′ − 𝜀, and 3)

min𝑖 𝑥
(𝑖)
𝑗

= 𝑦 𝑗 for each 𝑗 = 𝑗∗ + 1, . . . , 𝑛 − 1. It is easy to see that agent 1 will receive an interval

that is a subset of one of [𝑦 𝑗∗ , 𝑦 𝑗∗+1), . . . , [𝑦𝑛−1, 1]. Therefore, agent 1 will receive a value less than
the proportional value in this case. □

If the agents are not hungry, the set of points 𝑥
(𝑖)
1
, . . . , 𝑥

(𝑖)
𝑛−1 satisfying the condition in Step 1

may not be not unique. Different selections of this set may result in different allocations, in

particular, different left-to-right orders of agents. An agent can select this set (by reporting an

𝑓 ′𝑖 with 𝑥
(𝑖)
1
, . . . , 𝑥

(𝑖)
𝑛−1 being exactly what (s)he want) and potentially receive a better allocation.

However, in the case this agent does not know other agents’ valuations, it is equally likely that an

agent’s selection is not as good as the mechanism’s default selection. Therefore, Mechanism 3 is
still risk-averse truthful for agents that are not necessarily hungry.

It is possible to get rid of the hungry agents assumption. The trick is to make sure that each agent

𝑖 receives one of [0, 𝑥 (1)
1
), [𝑥 (1)

1
, 𝑥
(1)
2
), . . . , [𝑥 (1)

𝑛−1, 1] exactly. In this case, as long as an agent selects a

set 𝑥
(𝑖)
1
, . . . , 𝑥

(𝑖)
𝑛−1 that satisfies the condition in Step 1, (s)he will get exactly his/her proportional

share. Of course, if (s)he selects a set 𝑥
(𝑖)
1
, . . . , 𝑥

(𝑖)
𝑛−1 that does not satisfy the condition, the same

arguments in the proof of Theorem 6.5 show that there is always a scenario that (s)he will receive

a value less than the proportional value. These prove the theorem below, which is stated with the

formal proof left to the readers.

Theorem 6.6. If changing Step 7 of Mechanism 3 to “allocate [𝑥 (𝑖 𝑗 )
𝑗−1 , 𝑐 𝑗 ) to agent 𝑖 𝑗 ”, Mechanism 3

is proportionally risk-averse truthful (but not entire).

7 CONCLUSION AND FUTUREWORK
We have proved that a truthful proportional cake cutting mechanism does not exist, even in the

restrictive setting with two agents whose value density functions are piecewise-constant and

strictly positive. The impossibility result extends to the setting where it is not required that the

entire cake needs to be allocated. This resolves the long-standing fundamental open problem in

the cake cutting literature. The main take-home message for this paper is that dominant-strategy

truthfulness and fairness cannot be both guaranteed for the cake cutting problem. Therefore, to

deploy a cake-cutting mechanism, we need to further relax dominant-strategy truthfulness or

fairness.

Relaxing truthfulness. For relaxing dominant-strategy truthfulness, we have proposed a new

truthful notion called (proportionally) risk-averse truthfulness, which is motivated by the truthful

property that the I-cut-you-choose mechanism possesses. We have shown that some well-known

cake cutting algorithms do not satisfy this truthful criterion. We have provided a proportionally

risk-averse truthful and envy-free mechanism and a proportionally risk-averse truthful mechanism

that always outputs allocations with connected pieces.

In some scenarios where randomized mechanisms are acceptable and agents are generally risk-

neutral, another option is the randomized mechanism proposed by Mossel and Tamuz [34] that is

truthful in expectation.
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Relaxing proportionality. On the other hand, we can relax the proportionality requirement, and

instead, consider the approximation of proportionality. We have seen in Theorem 3.11 that there

does not exist a truthful and 0.974031-approximately proportional mechanism. How about smaller

approximation ratios?

Open Problem 1. Does there exist an 𝛼 > 0 such that there exists a truthful, 𝛼-approximately

proportional mechanism?

Designing dominant-strategy truthful mechanisms for piecewise-constant value density functions

is still a largely unexplored research area. To the best of the author’s knowledge, there is no known

“natural” dominant-strategy truthful mechanism if agents’ value density functions are piecewise-

constant. We only know some “unnatural” truthful mechanisms that either are oblivious to one

or more agents’ valuations (e.g., allocate the whole cake to a fixed single agent, allocate the cake

evenly to 𝑛 agents such that each agent receives a length of
1

𝑛
disregarding agents’ valuations, etc),

or cannot even guarantee each agent a positive value (e.g., the mechanism can arbitrarily fix two

different allocations (𝐴1, . . . , 𝐴𝑛) and (𝐴′1, . . . , 𝐴′𝑛) and let the 𝑛 agents vote for the more preferred

allocation; this mechanism is truthful and non-oblivious to all agents’ valuations, but some agents

may receive pieces with a zero value). These mechanisms cannot guarantee even the minimum

level of fairness.

Indeed, the author does not even know the existence of a truthful mechanism that guarantees

each agent a positive value. If the answer to the following open problem is no, we have the same

impossibility result as the result of Brânzei and Miltersen [19] for the Robertson-Webb query model.

Open Problem 2. Does there exist a truthful mechanism that always allocates each agent a subset

on which the agent has a positive value?

Of course, if agents are hungry, the answer to the problem above is yes, as the mechanism can

just allocate [0, 1] to the agents such that each agent receives a length of
1

𝑛
, disregarding the agents’

reports.

In conclusion, designing a “reasonable” truthful mechanism is still a challenging problem.

Cake cutting with more than two agents. We have proved the impossibility result on truthful

proportional mechanisms with 𝑛 = 2. Although this implies such mechanisms do not exist in

general, it still makes sense to consider this problem with a fixed number of agents that is more

than 2. The author conjectures that the impossibility result holds for any fixed 𝑛 ≥ 2.

Open Problem 3. Does there exist a positive integer 𝑛 ≥ 3 such that there exists a truthful

proportional mechanism with 𝑛 agents?

Empirical studies. We have proposed two mechanisms that are risk-averse truthful. It is also

interesting to test them empirically by simulations or sociological experiments and compare their

performances with other classical algorithms such as the moving-knife procedure and the Even-Paz

algorithm.
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A ADDITIONAL RELATEDWORK
In Sect. 1, we have discussed some related work for the cake-cutting problem, with the main focus

on the mechanism design aspect where truthfulness is a major concern in addition to fairness. In

this section, we will go through some related work in other aspects.

A.1 Computational Complexity
Although computational complexity of mechanisms is not the main focus of this paper (in fact,

the impossibility results in Sect. 3 is irrelevant to computational complexity, and they also exclude

the possibility of super-polynomial time mechanisms), being able to be executed in a polynomial

time is still a desirable property for a practical mechanism. It is easy to check that our mechanisms

in Sect. 5 and Sect. 6 can be implemented in polynomial time (in terms of the length of the string

encoding all the 𝑛 value density functions). If we do not consider truthfulness and focus exclusively

on fairness (envy-freeness and proportionality in particular), the computational complexity for

computing a fair allocation has been well studied.

Under Robertson-Webb querymodel. Naturally, the complexity of computing a fair allocation under

the Robertson-Webb query model is measured by the number of queries. The words “algorithm”

and “protocol” are used interchangeably below.

For computing a proportional allocation, both the moving-knife algorithm [25] and Even-Paz

algorithm [28] described in Sect. 6 compute proportional allocations with connected pieces. It is

easy to see that both algorithms can be implemented under the Robertson-Webb query model,

with complexity Θ(𝑛2) and Θ(𝑛 log𝑛) respectively. Edmonds and Pruhs [27] provide a Ω(𝑛 log𝑛)
lower bound on the complexity of deterministic proportional algorithms, which matches the upper

bound.

Computing an envy-free allocation under the Robertson-Webb query model is much more

challenging. The I-cut-you-choose protocol can easily find an envy-free allocation for two agents.

Selfridge and Conway independently found an envy-free protocol for three agents in 1960 (both
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Selfridge and Conway did not publish their work), and it requires 11 queries under the Robertson-

Webb query model. After more than 50 years later, Aziz and Mackenzie [8] discover an envy-free

protocol that requires 584 queries for four agents. Finally, Aziz andMackenzie [7] propose a protocol

for computing an envy-free allocation for 𝑛 agents, with 𝑂

(
𝑛𝑛

𝑛𝑛
𝑛𝑛

)
queries. On the other hand,

Procaccia [36] shows that every envy-free protocol requires Ω(𝑛2) queries. There is still a large
gap between the upper bound and the lower bound for the complexity of computing an envy-free

allocation under the Robertson-Webb query model.

For envy-free allocations with connected pieces, although the existence of such allocations is

guaranteed [41], Stromquist [40] show that it cannot be found by any finite protocol (i.e., a protocol

with finitely many queries), even for three agents (for two agents, the I-cut-you-choose protocol

always outputs envy-free allocations with connected pieces).

The complexity for computing approximately fair allocations has also been studied [20, 24, 26, 29].

We will not elaborate on it in this paper.

Under direct revelation model. The computation of a proportional allocation under the direct

revelation model can be done in a polynomial time, even under the connected pieces requirement

(e.g., the moving knife algorithm, Even-Paz algorithm, etc). Without the connected pieces require-

ment, computing an envy-free allocation for piecewise-constant value density functions can also

be done in a polynomial time (e.g., Mechanism 1). Notice that the time complexity is measured in

terms of the length of the input that encodes those 𝑛 value density functions, as it is standard in

the complexity theory. The remaining problem is the computational complexity for computing an

envy-free allocation with connected pieces.

Deng et al. [24] show that this problem is PPAD-complete. However, instead of assuming value

density functions are piecewise-constant, Deng et al. [24] consider a “polynomial-time function

model” where value density functions are given by polynomial-time algorithms. For piecewise-

constant value density functions, Seddighin et al. [38] show that envy-free allocations with con-

nected pieces can be computed in a polynomial time with a constant number of agents. For a

general number of agents, the computational complexity for the problem of finding an envy-free

allocation with connected pieces for piecewise-constant value density functions is still unknown.

A.2 Economic Efficiency of Allocations
Other than fairness, another well-motivated criterion for an allocation is (economic) efficiency, also
known as social welfare, which is defined as the sum of the agents’ values on their allocated shares∑𝑛

𝑖=1 𝑣𝑖 (𝐴𝑖 ). Social welfare measures the overall happiness of all the agents. There are mainly two

directions of research. One of them studies the optimization problem of maximizing social welfare

while guaranteeing fairness (typically, proportionality or envy-freeness). The other one studies the
price of fairness, which is defined as the ratio between the optimal social welfare and the optimal

social welfare under a fairness constraint.

For the first direction, most work focuses on the direct revelation model assuming piecewise-

constant value density functions. Under this setting, Cohler et al. [23] discover that the problem of

maximizing social welfare while guaranteeing proportionality and the same optimization problem

with an envy-freeness guarantee can both be formulated by linear programs, and thus can be

solved in a polynomial time. The properties of those “optimal fair allocations” are further studied

by Brams et al. [14]. If we impose the connected pieces requirement, Bei et al. [10] show that,

when guaranteeing proportionality, approximating the optimal social welfare to within a factor

of Ω(1/
√
𝑛) is NP-hard. If we completely drop the fairness requirement and focus exclusively on

social welfare, Aumann et al. [6] show that the optimization problem is strongly NP-hard. Aumann
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et al. [6] also present a (polynomial-time) (8 + 𝑜 (1))-approximation algorithm to complement the

hardness result.

The notion of the price of fairness was introduced by Bertsimas et al. [13] and Caragiannis et al.

[21] independently. Caragiannis et al. [21] show that the price of proportionality is Θ(
√
𝑛) when

agents’ value density functions are piecewise-constant. This implies that the price of envy-freeness

is Ω(
√
𝑛), as envy-freeness is a stronger fairness constraint than proportionality. The price of

fairness has also been studied for allocations with connected pieces [5]. In this case, allowing

allocations that are not entire may help improve social welfare. Arzi et al. [3] show that social

welfare can be improved by a factor of

√
𝑛 if we are allowed to discard some parts of the cake.

B PROOF OF THEOREM 3.11
LetM be a truthful and (1−𝜏)-approximately proportional mechanism for certain 𝜏 ∈ [0, 0.025969].
Like the proof for Theorem 3.1, we will construct six instances, analyze the outputs ofM on these

instances, and prove that truthfulness and (1 − 𝜏)-approximate proportionality cannot be both

guaranteed. The six instances we used are similar to those in the proof of Theorem 3.1.

Instance 1. 𝐹 (1) = (𝑓 (1)
1

, 𝑓
(1)
2
), where 𝑓 (1)

1
(𝑥) = 1 and 𝑓

(1)
2
(𝑥) = 1 for 𝑥 ∈ [0, 1].

To ensure the (1 − 𝜏)-approximate proportionality, we must have |M1 (𝐹 (1) ) | ≥ 1

2
(1 − 𝜏) and

|M2 (𝐹 (1) ) | ≥ 1

2
(1 − 𝜏). Let 𝑋2 =M2 (𝐹 (1) ) and 𝑋1 = [0, 1] \ 𝑋2. We haveM1 (𝐹 (1) ) ⊆ 𝑋1. Notice

that we may haveM1 (𝐹 (1) ) ⊊ 𝑋1, as we do not requireM to be entire.

Definition B.1. 𝑋2 =M2 (𝐹 (1) ) and 𝑋1 = [0, 1] \ 𝑋2.

Since |M1 (𝐹 (1) ) | ≥ 1

2
(1 − 𝜏) and |M2 (𝐹 (1) ) | ≥ 1

2
(1 − 𝜏), we have

|𝑋1 |, |𝑋2 | ∈
[
1

2

(1 − 𝜏), 1
2

(1 + 𝜏)
]
. (3)

In the instances constructed later, we let 𝜀 > 0 be a sufficiently small real number. Next, we

consider the following instance.

Instance 2. 𝐹 (2) = (𝑓 (2)
1

, 𝑓
(2)
2
), where 𝑓 (2)

1
(𝑥) = 1 for 𝑥 ∈ [0, 1] and

𝑓
(2)
2
(𝑥) =

{
𝜀 𝑥 ∈ 𝑋1

1 𝑥 ∈ 𝑋2

.

This instance is the same as the second instance in the proof of Theorem 3.1, except that 𝑋1 and

𝑋2 are defined differently.

Proposition B.2. M1 (𝐹 (2) ) ⊆ 𝑋1 andM2 (𝐹 (2) ) = 𝑋2.

Proof. Firstly, we must have |M2 (𝐹 (2) ) | ≤ |𝑋2 |. Otherwise, in the first instance, agent 2 will

misreport 𝑓
(2)
2

instead of truthfully reporting 𝑓
(1)
2

and receive an interval with a length of more

than |𝑋2 |, which is more beneficial. This will violate truthfulness.

Given |M2 (𝐹 (2) ) | ≤ |𝑋2 |, the maximum value agent 2 can receive is |𝑋2 | byM2 (𝐹 (2) ) = 𝑋2. In

addition, if agent 2 reports 𝑓
(1)
2

instead of truthfully reporting 𝑓
(2)
2

, the instance becomes 𝐹 (1) and

we know agent 2 will receive 𝑋2. To guarantee truthfulness, we must haveM2 (𝐹 (2) ) = 𝑋2.

Finally, this further impliesM1 (𝐹 (2) ) ⊆ 𝑋1. □

The third instance is also similar to before. To optimize the approximation ratio for proportionality

in this impossibility result, we set the value for 𝑓
(3)
1
(𝑥) on 𝑋1 to

1

3
instead of 0.5.
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Instance 3. 𝐹 (3) = (𝑓 (3)
1

, 𝑓
(3)
2
), where

𝑓
(3)
1
(𝑥) =

{
1

3
𝑥 ∈ 𝑋1

1 𝑥 ∈ 𝑋2

and 𝑓
(3)
2
(𝑥) =

{
𝜀 𝑥 ∈ 𝑋1

1 𝑥 ∈ 𝑋2

.

We will define 𝑋11, 𝑋12, 𝑋21 and 𝑋22 as follows.

Definition B.3. 𝑋11 = M1 (𝐹 (3) ) ∩ 𝑋1, 𝑋12 = M2 (𝐹 (3) ) ∩ 𝑋1, 𝑋21 = M1 (𝐹 (3) ) ∩ 𝑋2 and 𝑋22 =

M2 (𝐹 (3) ) ∩ 𝑋2.

We haveM1 (𝐹 (3) ) = 𝑋11 ∪𝑋21 andM2 (𝐹 (3) ) = 𝑋12 ∪𝑋22. We also have |𝑋11 | + |𝑋12 | ≤ |𝑋1 | and
|𝑋21 | + |𝑋22 | ≤ |𝑋2 |. Notice that the inequalities may be strict, as the allocation needs not to be

entire.

We show that both |𝑋11 | and |𝑋21 | are approximately
1

4
. The proof is similar to the proof of

Proposition 3.4, with some extra calculations.

Proposition B.4. |𝑋11 | and |𝑋21 | are bounded as follows:
1

4

− 7

2

𝜏 + 1

4

𝜏2 − 𝜀 · 3
4

(1 + 𝜏)2 ≤ |𝑋11 | ≤
1

4

+ 3

2

𝜏 − 1

4

𝜏2,

1

4

− 𝜏 + 1

4

𝜏2 ≤ |𝑋21 | ≤
1

4

(1 + 𝜏)2 + 𝜀 · 1
4

(1 + 𝜏)2.

Proof. By the (1 − 𝜏)-approximate proportionality for agent 1, we must have

1

3

|𝑋11 | + |𝑋21 | ≥
1

2

(1 − 𝜏) ·
(
1

3

|𝑋1 | + |𝑋2 |
)
. (4)

In addition, we must also have |M1 (𝐹 (3) ) | ≤ |M1 (𝐹 (2) ) |. Otherwise, in the second instance, it is

more beneficial for agent 1 to report 𝑓
(3)
1

than truthfully reporting 𝑓
(2)
1

. Thus,

|𝑋11 | + |𝑋21 | ≤ |M1 (𝐹 (2) ) | ≤ |𝑋1 |. (5)

By (4) and (5), we can obtain

|𝑋21 | ≥ −
1

4

(1 + 𝜏) |𝑋1 | +
3

4

(1 − 𝜏) |𝑋2 |. (6)

By the (1 − 𝜏)-approximate proportionality for agent 2, we have

𝜀 |𝑋12 | + |𝑋22 | ≥
1

2

(1 − 𝜏) · (𝜀 |𝑋1 | + |𝑋2 |) ,

which, by |𝑋12 | ≤ |𝑋1 |, implies

|𝑋22 | ≥
1

2

(1 − 𝜏) |𝑋2 | + 𝜀 ·
(
1

2

(1 − 𝜏) |𝑋1 | − |𝑋12 |
)
≥ 1

2

(1 − 𝜏) |𝑋2 | − 𝜀 ·
1

2

(1 + 𝜏) |𝑋1 |,

which, by |𝑋21 | + |𝑋22 | ≤ |𝑋2 |, further implies

|𝑋21 | ≤
1

2

(1 + 𝜏) |𝑋2 | + 𝜀 ·
1

2

(1 + 𝜏) |𝑋1 |. (7)

Substituting (3) into (6) and (7), we have

1

4

− 𝜏 + 1

4

𝜏2 ≤ |𝑋21 | ≤
1

4

(1 + 𝜏)2 + 𝜀 · 1
4

(1 + 𝜏)2. (8)

We can also obtain the range of |𝑋11 | by combining (4), (5), (8) and (3) with some calculations:

1

4

− 7

2

𝜏 + 1

4

𝜏2 − 𝜀 · 3
4

(1 + 𝜏)2 ≤ |𝑋11 | ≤
1

4

+ 3

2

𝜏 − 1

4

𝜏2 . (9)

□
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Instance 4. 𝐹 (4) = (𝑓 (4)
1

, 𝑓
(4)
2
), where

𝑓
(4)
1
(𝑥) =


1 𝑥 ∈ 𝑋11√
𝜀 𝑥 ∈ 𝑋21

𝜀 𝑥 ∈ [0, 1] \ (𝑋11 ∪ 𝑋21)
and 𝑓

(4)
2
(𝑥) =

{
𝜀 𝑥 ∈ 𝑋1

1 𝑥 ∈ 𝑋2

.

The proposition below shows that the total length agent 2 can get from𝑋2 is at most approximately

1

4
.

Proposition B.5. |M2 (𝐹 (4) ) ∩ 𝑋2 | ≤ 1

4
+ 3

2
𝜏 − 1

4
𝜏2 +
√
𝜀.

Proof. Suppose agent 1 report 𝑓
(3)
1

instead of his/her true value density function 𝑓
(4)
1

. The

instance becomes Instance 3, and we have seen that agent 1 will receive 𝑋11 ∪ 𝑋21, which is worth

|𝑋11 | +
√
𝜀 |𝑋21 | with respect to his/her true value density function 𝑓

(4)
1

. To ensure truthfulness, we

must have

𝑣1 (M1 (𝐹 (4) )) ≥ |𝑋11 | +
√
𝜀 · |𝑋21 |. (10)

On the other hand, we have

𝑣1 (M1 (𝐹 (4) )) = |M1 (𝐹 (4) ) ∩ 𝑋11 | +
√
𝜀 · |M1 (𝐹 (4) ) ∩ 𝑋21 | + 𝜀 · |𝑀1 (𝐹 (4) ) \ (𝑋11 ∪ 𝑋21) |

≤ |𝑋11 | +
√
𝜀 · |M1 (𝐹 (4) ) ∩ 𝑋21 | + 𝜀.

Combining this with (10), we have

|M1 (𝐹 (4) ) ∩ 𝑋21 | ≥ |𝑋21 | −
√
𝜀.

For agent 2, we then have

|M2 (𝐹 (4) ) ∩ 𝑋2 | ≤ |𝑋2 | − |M1 (𝐹 (4) ) ∩ 𝑋2 |
≤ |𝑋2 | − |M1 (𝐹 (4) ) ∩ 𝑋21 |
≤ |𝑋2 | − |𝑋21 | +

√
𝜀

≤ 1

2

(1 + 𝜏) −
(
1

4

− 𝜏 + 1

4

𝜏2
)
+
√
𝜀 (by (3) and (8))

=
1

4

+ 3

2

𝜏 − 1

4

𝜏2 +
√
𝜀.

□

Instance 5. 𝐹 (5) = (𝑓 (5)
1

, 𝑓
(5)
2
), where 𝑓 (5)

1
(𝑥) = 1 for 𝑥 ∈ [0, 1] and

𝑓
(5)
2
(𝑥) =


1 𝑥 ∈ 𝑋2

1 − 𝜀 𝑥 ∈ 𝑋11

𝜀 𝑥 ∈ 𝑋1 \ 𝑋11

.

The following proposition says that agent 1 must receive most of 𝑋11 and agent 2 must receive

exactly 𝑋2.

Proposition B.6. |M1 (𝐹 (5) ) ∩ 𝑋11 | ≥ |𝑋11 | − 𝜏 andM2 (𝐹 (5) ) = 𝑋2.

Proof. The reason forM2 (𝐹 (5) ) = 𝑋2 is similar as it is in the proof of Proposition 3.7: firstly,

we must have |M2 (𝐹 (5) ) | ≤ |𝑋2 |, for otherwise agent 2 in Instance 1 will misreport his/her value

density function to 𝑓
(5)
2

; secondly, given |M2 (𝐹 (5) ) | ≤ |𝑋2 |, the maximum value agent 2 can get is

|𝑋2 | by receiving 𝑋2, and we must allocate 𝑋2 to agent 2 to avoid him/her to misreport 𝑓
(1)
2

. This

proves the second half of the proposition.
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Since 𝑋2 is allocated to agent 2 and 𝑋1 = [0, 1] \ 𝑋2, we haveM1 (𝐹 (5) ) ⊆ 𝑋1. To guarantee

(1 − 𝜏)-approximate proportionality, we must have |M1 (𝐹 (5) ) ∩ 𝑋1 | ≥ 1

2
(1 − 𝜏), which, by (3),

implies

|𝑋1 \M1 (𝐹 (5) ) | = |𝑋1 | − |𝑀1 (𝐹 (5) ) ∩ 𝑋1 | ≤
1

2

(1 + 𝜏) − 1

2

(1 − 𝜏) = 𝜏 .

As a result,

|𝑋11 \M1 (𝐹 (5) ) | ≤ |𝑋1 \M1 (𝐹 (5) ) | ≤ 𝜏,

which implies the first half of the proposition. □

Instance 6. 𝐹 (6) = (𝑓 (6)
1

, 𝑓
(6)
2
), where

𝑓
(6)
1
(𝑥) =


1 𝑥 ∈ 𝑋11√
𝜀 𝑥 ∈ 𝑋21

𝜀 𝑥 ∈ [0, 1] \ (𝑋11 ∪ 𝑋21)
and 𝑓

(6)
2
(𝑥) =


1 𝑥 ∈ 𝑋2

1 − 𝜀 𝑥 ∈ 𝑋11

𝜀 𝑥 ∈ 𝑋1 \ 𝑋11

.

Firstly, the length agent 2 receives on 𝑋2 is at most approximately
1

4
.

Proposition B.7. |M2 (𝐹 (6) ) ∩ 𝑋2 | ≤ 1

4
+ 3

2
𝜏 − 1

4
𝜏2 + 2

√
𝜀.

Proof. Consider Instance 4 in this proof. By Proposition B.5, the value agent 2 can receive in

M2 (𝐹 (4) ), with respect to 𝑓
(4)
2

, is at most

𝜀 · |M2 (𝐹 (4) ) ∩ 𝑋1 | + 1 ·
(
1

4

+ 3

2

𝜏 − 1

4

𝜏2 +
√
𝜀

)
<

1

4

+ 3

2

𝜏 − 1

4

𝜏2 + 2
√
𝜀.

If |M2 (𝐹 (6) )∩𝑋2 | > 1

4
+ 3

2
𝜏− 1

4
𝜏2+2
√
𝜀, the subsetM2 (𝐹 (6) )∩𝑋2 is worthmore than

1

4
+ 3

2
𝜏− 1

4
𝜏2+2
√
𝜀

with respect to 𝑓
(4)
2

. Then agent 2 will report 𝑓
(6)
2

instead of the true value density function 𝑓
(4)
2

(now the instance becomes Instance 6 as 𝑓
(4)
1

= 𝑓
(6)
1

), and receive more benefit, which contradicts

to the truthfulness. □

Next, we show that most part of |𝑋11 | are not allocated to agent 2.

Proposition B.8. |M2 (𝐹 (6) ) ∩ 𝑋11 | ≤ 𝜏 +
√
𝜀.

Proof. Suppose agent 1 report 𝑓
(5)
1

instead of his/her true value density function 𝑓
(6)
1

. The

instance becomes Instance 5, and Proposition B.6 implies agent 1 will receive a length of at least

|𝑋11 | − 𝜏 on 𝑋11, which is worth |𝑋11 | − 𝜏 with respect to 𝑓
(6)
1

. To guarantee truthfulness, we must

have 𝑣1 (M1 (𝐹 (6) )) ≥ |𝑋11 | − 𝜏 .
On the other hand, we have

𝑣1 (M1 (𝐹 (6) )) = |M1 (𝐹 (6) ) ∩ 𝑋11 | +
√
𝜀 · |M1 (𝐹 (6) ) ∩ 𝑋21 | + 𝜀 · |M1 (𝐹 (6) ) \ (𝑋11 ∪ 𝑋21) |

≤ |M1 (𝐹 (6) ) ∩ 𝑋11 | +
√
𝜀.

Putting those together, we have

|M1 (𝐹 (6) ) ∩ 𝑋11 | +
√
𝜀 ≥ |𝑋11 | − 𝜏,

which implies |M1 (𝐹 (6) )∩𝑋11 | ≥ |𝑋11 |−𝜏−
√
𝜀, which further implies |M2 (𝐹 (6) )∩𝑋11 | ≤ 𝜏+

√
𝜀. □

Finally, we show that Proposition B.7 and Proposition B.8 imply that the (1 − 𝜏)-approximate

proportionality cannot be satisfied for agent 2 if 𝜏 is small.
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The two propositions imply the following upper bound on the value agent 2 gets:

𝑣2 (M2 (𝐹 (6) )) = |M2 (𝐹 (6) ) ∩ 𝑋11 | · (1 − 𝜀) + |M2 (𝐹 (6) ) ∩ 𝑋2 | · 1 + |M2 (𝐹 (6) ) \ (𝑋11 ∪ 𝑋2) | · 𝜀
≤ |M2 (𝐹 (6) ) ∩ 𝑋11 | + |M2 (𝐹 (6) ) ∩ 𝑋2 | + 𝜀

≤ (𝜏 +
√
𝜀) +

(
1

4

+ 3

2

𝜏 − 1

4

𝜏2 + 2
√
𝜀

)
+ 𝜀 (Proposition B.7 and Proposition B.8)

<
1

4

+ 5

2

𝜏 − 1

4

𝜏2 + 4
√
𝜀.

On the other hand, we have

𝑣2 ( [0, 1]) = |𝑋2 | + (1 − 𝜀) |𝑋11 | + 𝜀 · |𝑋1 \ 𝑋11 |
≥ |𝑋2 | + (1 − 𝜀) |𝑋11 |

≥ 1

2

(1 − 𝜏) + (1 − 𝜀)
(
1

4

− 7

2

𝜏 + 1

4

𝜏2 − 𝜀 · 3
4

(1 + 𝜏)2
)

(by (3) and (9))

>
3

4

− 4𝜏 + 1

4

𝜏2 − 10𝜀, (10 is a loose upper bound to the coefficient of 𝜀)

and the (1 − 𝜏)-approximately proportional value for agent 2 is

1

2

(1 − 𝜏)𝑣2 ( [0, 1]) >
1

2

(1 − 𝜏)
(
3

4

− 4𝜏 + 1

4

𝜏2 − 10𝜀
)
>

3

8

− 19

8

𝜏 + 17

8

𝜏2 − 1

8

𝜏3 − 10𝜀.

Therefore, to guarantee the (1−𝜏)-approximate proportionality for agent 2, a necessary condition

is

1

4

+ 5

2

𝜏 − 1

4

𝜏2 + 4
√
𝜀 >

3

8

− 19

8

𝜏 + 17

8

𝜏2 − 1

8

𝜏3 − 10𝜀.
Elementary calculations show that

1

4

+ 5

2

𝜏 − 1

4

𝜏2 <
3

8

− 19

8

𝜏 + 17

8

𝜏2 − 1

8

𝜏3

for 𝜏 ∈ [0, 0.025969]. By considering a sufficiently small 𝜀, the (1 − 𝜏)-approximate proportionality

cannot hold for agent 2 if 𝜏 ≤ 0.025969, which concludes Theorem 3.11.

C DISCUSSIONS ON BRAMS, JONES, AND KLAMLER’S TRUTHFUL NOTION AND
MECHANISMS

Brams et al. [16] define a truthful notion called strategy-proofness which is similar but slightly

weaker than our risk-averse truthfulness. In this section, we will use the word “strategy-proof”

to refer to the truthful notion defined by Brams et al. [16] (although strategy-proofness is more

often used for dominant strategy truthfulness). In Sect. C.1, we will define strategy-proofness

and compare it with our (proportional) risk-averse truthfulness. In Sect. C.2, we will describe

the equitability procedure, a mechanism proposed by Brams et al. [16] that is strategy-proof and

proportional which always outputs allocations with connected pieces (see the first paragraph in

Sect. 6 for allocations with connected pieces), and we will compare it with our Mechanism 3.

C.1 Strategy-Proofness in Brams et al. [16]
In reference [16], a mechanism is strategy-vulnerable if a (risk-averse) agent can misreport his/her

value density function and “assuredly” do better, regardless of the functions reported by other

players. A mechanism is strategy-proof if it is not strategy-vulnerable. This notion is slightly

weaker than our risk-averse truthfulness (and so further weaker than the proportional risk-averse

truthfulness). Consider a scenario where an agent 𝑖 misreports 𝑓𝑖 to 𝑓 ′𝑖 . If 𝑓𝑖 and 𝑓 ′𝑖 give the same
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worst-case utility to agent 𝑖 , and 𝑓 ′𝑖 sometimes performs strictly better, the mechanism is strategy-

proof in Brams et al.’s definition, but it does not satisfy Definition 4.2.

Perhaps an illustrating example is the moving-knife procedure (see Sect. 6). We have seen that

the moving-knife procedure is not risk-averse truthful (Theorem 6.2). However, it is strategy-proof.

Theorem C.1. The moving-knife procedure is strategy-proof.

Proof. Consider agent 1 whose value density function is 𝑓1, and consider an arbitrary value

density function 𝑓 ′
1
. LetM be the moving-knife procedure. We will show that, there exist 𝑓2, . . . , 𝑓𝑛

satisfying 𝑣1 (𝐴1) ≥ 𝑣1 (𝐴′1) for (𝐴1, . . . , 𝐴𝑛) = M(𝑓1, . . . , 𝑓𝑛) and (𝐴′1, . . . , 𝐴′𝑛) = M(𝑓 ′1 , 𝑓2, . . . , 𝑓𝑛).
This will implyM is strategy-proof.

Let 𝑥0 = 0 and 𝑥𝑛 = 1. We define 𝑥1, . . . , 𝑥𝑛−1 iteratively as follows: given 𝑥𝑖−1, let 𝑥𝑖 be the

smallest number such that

∫ 𝑥𝑖

𝑥𝑖−1
𝑓 ′
1
(𝑥)𝑑𝑥 = 1

𝑛

∫
1

0
𝑓 ′
1
(𝑥)𝑑𝑥 . Clearly, for each 𝑖 = 1, . . . , 𝑛, the interval

[𝑥𝑖−1, 𝑥𝑖 ] is worth exactly the proportional value in terms of 𝑓 ′
1
.

Suppose
1

𝑛
=

∫ 𝑥
1

0
𝑓 ′
1
(𝑥)𝑑𝑥∫

1

0
𝑓 ′
1
(𝑥)𝑑𝑥

≥
∫ 𝑥

1

0
𝑓1 (𝑥)𝑑𝑥∫

1

0
𝑓1 (𝑥)𝑑𝑥

. We construct 𝑓2, . . . , 𝑓𝑛 such that 𝑓2 (𝑥) = · · · = 𝑓𝑛 (𝑥) = 0

on [0, 𝑥1]. In this case,M will allocate [0, 𝑥1] to agent 1 if agent 1 reports 𝑓 ′
1
, andM will allocate

at least [0, 𝑥1] to agent 1 if agent 1 reports 𝑓1. Thus, 𝑣1 (𝐴1) ≥ 𝑣1 (𝐴′1).

Suppose
1

𝑛
=

∫ 𝑥
1

0
𝑓 ′
1
(𝑥)𝑑𝑥∫

1

0
𝑓 ′
1
(𝑥)𝑑𝑥

<

∫ 𝑥
1

0
𝑓1 (𝑥)𝑑𝑥∫

1

0
𝑓1 (𝑥)𝑑𝑥

. We have
𝑛−1
𝑛

=

∫
1

𝑥
1

𝑓 ′
1
(𝑥)𝑑𝑥∫

1

0
𝑓 ′
1
(𝑥)𝑑𝑥

>

∫
1

𝑥
1

𝑓1 (𝑥)𝑑𝑥∫
1

0
𝑓1 (𝑥)𝑑𝑥

. By the Pigeonhole

Principle, there exists 𝑖 ≥ 2 such that

∫ 𝑥𝑖

𝑥𝑖−1
𝑓1 (𝑥)𝑑𝑥 < 1

𝑛

∫
1

0
𝑓1 (𝑥)𝑑𝑥 . For an arbitrarily small 𝜀 > 0,

we can construct 𝑓2, . . . , 𝑓𝑛 such that

⋃𝑖
𝑡=2𝐴

′
𝑡 = [0, 𝑥𝑖−1 − 𝜀), and 𝐴′1 ⊆ [𝑥𝑖−1 − 𝜀, 𝑥𝑖 ]. By making 𝜀

sufficiently small, we will have 𝑣1 (𝐴′1) < 1

𝑛

∫
1

0
𝑓1 (𝑥)𝑑𝑥 . The proportionality of the moving-knife

procedure ensures 𝑣1 (𝐴1) ≥ 1

𝑛

∫
1

0
𝑓1 (𝑥)𝑑𝑥 . Thus, 𝑣1 (𝐴1) > 𝑣1 (𝐴′1). □

C.2 Equitability Procedure
Brams et al. [16] propose a strategy-proof mechanism, the equitability procedure, that always outputs
a proportional allocation. In addition, Brams et al. [16] claim that, under the equitability procedure,

an agent may receive a share that is worth less than his/her proportional share if (s)he misreports

his/her value density function (see Theorem 3 of the paper). This claim is even stronger than saying

that the procedure is proportionally risk-averse truthful. We will show that this claim is wrong,

and the mechanism is not even proportionally risk-averse truthful.

Definition C.2. Given a valuation profile (𝑓1, . . . , 𝑓𝑛), an allocation (𝐴1, . . . , 𝐴𝑛) is equitable if∫
𝐴1

𝑓1 (𝑥)𝑑𝑥∫
1

0
𝑓1 (𝑥)𝑑𝑥

=

∫
𝐴2

𝑓2 (𝑥)𝑑𝑥∫
1

0
𝑓2 (𝑥)𝑑𝑥

= · · · =

∫
𝐴𝑛

𝑓𝑛 (𝑥)𝑑𝑥∫
1

0
𝑓𝑛 (𝑥)𝑑𝑥

.

A mechanism is equitable if it always outputs equitable allocations with respect to the reported

value density functions.

The equitability procedure always outputs equitable, proportional, and entire allocations with

connected pieces. An entire allocation with connected pieces can be characterized by a permutation

of (1, . . . , 𝑛) which specifies a left-to-right order of the agents and a set of𝑛−1 cut points 𝑥1, . . . , 𝑥𝑛−1
that divide the cake to 𝑛 intervals such that the 𝑖-th interval is allocated to the 𝑖-th agent in the

order specified by the permutation. The equitability procedure computes 𝑥1, . . . , 𝑥𝑛−1 that yield an

equitable allocation for each of the 𝑛! permutations. Then it outputs an allocation that maximizes

the fractional value

∫
𝐴𝑖

𝑓𝑖 (𝑥)𝑑𝑥∫
1

0
𝑓𝑖 (𝑥)𝑑𝑥

(notice that the fraction has the same value for all the agents, as the

allocation is equitable). This finishes the description of the equitability procedure.

 
Session 4B: Fair Division and Prediction Markets ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

431



It is proved by Brams et al. [16] that the procedure is strategy-proof. In addition, the procedure

always outputs a proportional allocation (stated in the first half of Theorem 3 in their paper).

Intuitively, in the moving-knife procedure, the first 𝑛 − 1 agents receive exactly their proportional

shares, while the last agent may receive more. Consider the same left-to-right order. By shifting

the 𝑛 − 1 cut points rightward for a little bit, we can make the allocation equitable while making

sure each agent receives a piece with a slightly larger value. Thus, there exist “good” left-to-right

orders where the resultant equitable allocations are proportional.

As we mentioned, Brams et al. [16] misclaim in Theorem 3 that, under the equitability procedure,

an agent may receive a piece with a value less than the proportional value if (s)he misreports his/her

value density function. Before we disprove this claim, we first note that value density functions are

normalized with

∫
1

0
𝑓𝑖 (𝑥)𝑑𝑥 = 1 in reference [16], and two value density functions are considered

the same if one rescales the other. However, the uniform function 𝑓 (𝑥) = 1 and the two functions

ℓ (𝑛) , 𝑟 (𝑛) defined in (2) are all normalized, and they are distinct. Suppose 𝑓 (𝑥) = 1 is an agent’s

true value density function, Lemma 6.1 implies that reporting ℓ (𝑛) or 𝑟 (𝑛) can still guarantee a

proportional share for this agent since the equitability procedure always outputs proportional

allocations with respect to the reported value density functions. Since ℓ (𝑛) , 𝑟 (𝑛) and 𝑓 are different

even up to normalization, this disproves the claim made by Brams et al. [16].

In addition, the equitability procedure is not proportionally risk-averse truthful: an agent with the

uniform value density function can misreport his/her valuation to ℓ (𝑛) or 𝑟 (𝑛) , which is sometimes

more beneficial while still guaranteeing to receive a proportional share.

Theorem C.3. The equitability procedure is not proportionally risk-averse truthful.

Proof. Let 𝑓1 (𝑥) = 1 for 𝑥 ∈ [0, 1] be agent 1’s true value density function. Lemma 6.1 implies

that reporting ℓ (𝑛) still guarantees a proportional share for agent 1. It remains to show that there exist

𝑓2, . . . , 𝑓𝑛 such that reporting ℓ (𝑛) is strictly more beneficial for agent 1 than truthfully reporting 𝑓1.

Let 𝑓2 (𝑥) = 1 for 𝑥 ∈ [0, 1
𝑛
] and 𝑓2 (𝑥) = 0 for 𝑥 ∈ ( 1

𝑛
, 1], and 𝑓3 (𝑥) = · · · = 𝑓𝑛 (𝑥) = 0 for 𝑥 ∈ [0, 𝑛−1

𝑛
)

and 𝑓3 (𝑥) = · · · = 𝑓𝑛 (𝑥) = 1 for 𝑥 ∈ [𝑛−1
𝑛
, 1].

For both scenarios where agent 1 reports 𝑓1 and ℓ (𝑛) respectively, agent 1 will be the second
agent in the left-to-right order of the allocation. Let 𝐼 be the interval allocated to agent 1 when (s)he

truthfully reports 𝑓1. Then 𝐼 is an interval that is near the left edge of the cake. By misreporting

ℓ (𝑛) , the value of 𝐼 in terms of ℓ (𝑛) is smaller than its value in terms of 𝑓1. To maintain equitability,

the equitability procedure will stretch 𝐼 to make sure the fractional value for agent 1 matches the

fractional value for the remaining agents. This will make misreporting ℓ (𝑛) more beneficial. □

Notice that the author of this paper does not know if the equitability procedure is risk-averse

truthful.

Comparison between the equitability procedure and Mechanism 3. The advantage of the equitability
procedure is its equitability guarantee. Equitability is a desirable property for fairness in many

applications. In our Mechanism 3, the first agent in the left-to-right order receives exactly his/her

proportional share, while the remaining agents may receive more than their proportional shares.

This may be viewed as being unfair to the first agent.

If we make the change in Theorem 6.6 for Mechanism 3, the mechanism becomes equitable: each

agent receives exactly
1

𝑛
of the value of the whole cake. The equitability procedure outperforms this

mechanism by allocation efficiency. The equitability procedure always outputs entire allocations,

and each agent may receive a piece with more than his/her proportional value.

The advantage of Mechanism 3 is its stronger truthful guarantee, as we have already seen. In

addition, the equitability procedure runs in exponential time (the mechanism needs to enumerate
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all the 𝑛! permutations of the 𝑛 agents), while Mechanism 3, as well as all our mechanisms in Sect. 5

and Sect. 6, run in polynomial time.

D OMITTED PROOFS IN SECT. 6
D.1 Proof of Theorem 6.2
Let 𝑓1 (𝑥) = 1 for 𝑥 ∈ [0, 1] be the true value density function for agent 1. We show that agent 1 can

misreport his/her value density function to 𝑓 ′
1
= ℓ (𝑛) that satisfies 1) there exists 𝑓2, . . . , 𝑓𝑛 such that

𝑣1 (M1 (𝑓 ′1 , 𝑓2, . . . , 𝑓𝑛)) > 𝑣1 (M1 (𝑓1, 𝑓2, . . . , 𝑓𝑛)), and 2) for any 𝑓2, . . . , 𝑓𝑛 , 𝑣1 (M1 (𝑓 ′1 , 𝑓2, . . . , 𝑓𝑛)) ≥
𝑣1 (M1 (𝑓1, 𝑓2, . . . , 𝑓𝑛)).

To see 1), suppose 𝑓2 (𝑥) = 1 for 𝑥 ∈ [0, 1
𝑛
] and 𝑓2 (𝑥) = 0 for 𝑥 ∈ ( 1

𝑛
, 1], and 𝑓3 (𝑥) = · · · = 𝑓𝑛 (𝑥) =

0 for 𝑥 ∈ [0, 1
𝑛
) and 𝑓3 (𝑥) = · · · = 𝑓𝑛 (𝑥) = 1 for 𝑥 ∈ [ 1

𝑛
, 1]. In the moving-knife procedure, if agent 1

truthfully reports 𝑓1, (s)he will be the second agent receiving an interval after agent 2 taking [0, 1

𝑛2
),

and (s)he will receive [ 1
𝑛2
, 1
𝑛
+ 1

𝑛2
), which is worth

1

𝑛
. If agent 1 reports 𝑓 ′

1
, (s)he will also be the

second agent receiving an interval after agent 2 taking [0, 1

𝑛2
), and (s)he will receive [ 1

𝑛2
, 1
𝑛
+ 3

2𝑛2
)

(by some simple calculations), which is worth more than
1

𝑛
with respect to his/her true valuation.

To see 2), suppose agent 1 reports 𝑓 ′
1
. Since the moving-knife procedure is proportional, regardless

of what the remaining 𝑛 − 1 agents report, agent 1 will receive an interval that has a value of at

least
1

𝑛
with respect to 𝑓 ′

1
. By Lemma 6.1, agent 1 receives an interval that is worth at least

1

𝑛
with

respect to his/her true valuation 𝑓1. This already shows that the moving-knife procedure is not

proportionally risk-averse truthful.

We can further show that the procedure is not even risk-averse truthful. Consider any 𝑓2, . . . , 𝑓𝑛 .

If agent 1 is not the last agent receiving an interval by reporting 𝑓1 truthfully, agent 1 receives

exactly value
1

𝑛
by the nature of the moving-knife procedure. Since we have shown that reporting

𝑓 ′
1
also guarantees the proportionality of agent 1, reporting 𝑓 ′

1
will not harm agent 1. Suppose agent

1 is the last agent receiving an interval by reporting 𝑓1 truthfully. Now, suppose agent 1 reports 𝑓
′
1
.

In each iteration of the procedure, by Lemma 6.1, agent 1’s marked point for reporting 𝑓 ′
1
is the

same as, or on the right-hand side of, agent 1’s marked point for reporting 𝑓1. This indicates that

agent 1 will still be the last agent to receive an interval when reporting 𝑓 ′
1
. Moreover, the first 𝑛 − 1

points cut by the procedure will only depend on 𝑓2, . . . , 𝑓𝑛 . Thus, when agent 1 reports 𝑓 ′
1
, agent 1

receives the same interval as it is in the case where agent 1 reports 𝑓1. In this case, reporting 𝑓 ′
1

does not harm agent 1 as well.

D.2 Proof of Theorem 6.3
Consider the scenario with 𝑛 = 5 agents. Let 𝑓1 (𝑥) = 1 for 𝑥 ∈ [0, 1] be the true value density func-

tion for agent 1. We show that agent 1 can misreport his/her value density function to 𝑓 ′
1
= 𝑟 (5) that

satisfies 1) there exist 𝑓2, 𝑓3, 𝑓4, 𝑓5 such that 𝑣1 (M1 (𝑓 ′1 , 𝑓2, 𝑓3, 𝑓4, 𝑓5)) > 𝑣1 (M1 (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5)), and 2)
for any 𝑓2, 𝑓3, 𝑓4, 𝑓5, we have 𝑣1 (M1 (𝑓 ′1 , 𝑓2, 𝑓3, 𝑓4, 𝑓5)) ≥ 1

5
𝑣1 ( [0, 1]). Since the Even-Paz algorithm is

proportional, Lemma 6.1 immediately implies 2). It remains to show 1).

Let 𝜀 > 0 be a small number less than
1

10
. Consider 𝑓2 (𝑥) = 1 on [0, 𝜀) and 𝑓2 (𝑥) = 0 on [𝜀, 1], and

𝑓3 (𝑥) = 𝑓4 (𝑥) = 𝑓5 (𝑥) = 0 on [0, 1 − 𝜀) and 𝑓3 (𝑥) = 𝑓4 (𝑥) = 𝑓5 (𝑥) = 1 on [1 − 𝜀, 1]. We analyze two

cases: the case where agent 1 truthfully reports 𝑓1 and the case where agent 1 reports 𝑓 ′
1
. It is easy

to verify that, in both cases, after the first round of the algorithm, an allocation of [0, 1 − 3

5
𝜀] to

agent 1 and 2 is to be decided, and an allocation of (1 − 3

5
𝜀, 1] to agent 3, 4, 5 is to be decided. In the

next round, the algorithm will find the half-half point for each of agent 1 and 2 on [0, 1 − 3

5
𝜀], and

the algorithm will cut at the median of the two points, which is the average of the two points, and

allocate the right-hand side interval to agent 1. By some simple calculations, the half-half point of

𝑓1 on [0, 1 − 3

5
𝜀] is to the right of the half-half point of 𝑓 ′

1
on [0, 1 − 3

5
𝜀]. As a result, agent 1 will
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receives a larger length of interval if (s)he reports 𝑓 ′
1
. Since the true value density function 𝑓1 is

uniform, reporting 𝑓 ′
1
will give agent 1 more utility.
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