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 MATHEMATICS OF OPERATIONS RESEARCH
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 ON THE COMPLEXITY OF COOPERATIVE SOLUTION
 CONCEPTS

 XIAOTIE DENG AND CHRISTOS H. PAPADIMITRIOU

 We study from a complexity theoretic standpoint the various solution concepts arising in
 cooperative game theory. We use as a vehicle for this study a game in which the players are
 nodes of a graph with weights on the edges, and the value of a coalition is determined by the
 total weight of the edges contained in it. The Shapley value is always easy to compute. The
 core is easy to characterize when the game is convex, and is intractable (NP-complete)
 otherwise. Similar results are shown for the kernel, the nucleolus, the E-core, and the
 bargaining set. As for the von Neumann-Morgenstern solution, we point out that its existence
 may not even be decidable. Many of these results generalize to the case in which the game is
 presented by a hypergraph with edges of size k > 2.

 1. Introduction. Formalizing fairness in a cooperative environment is one of the
 fundamental conceptual problems in game and economic theory. To understand the
 issue, suppose that we have a finite set N = {1, 2,..., n} of players. The players may
 form arbitrary coalitions, and for each possible coalition S c N we know the amount
 v(S) that coalition S cannot be prevented from obtaining (u(S) is called the value of
 S). The basic problem is this: Given a proposed imputation x = (xl,..., xi, ..., xn),
 where En=1 = v(N), is x a "fair" way for the n players to split v(N)? There are
 many such notions of "fairness" that have been proposed in the past; such notions
 are usually called solution concepts (the survey in Shubik (1981) lists at least ten).
 These solution concepts differ substantially in their naturalness, intuitiveness, sophis-
 tication, and the apparent complexity of their definition. There are arguments and
 counterarguments why each such proposal is a reasonable mathematical rendering of
 the intuitive concept of "fairness."

 A solution concept defines, for each function v: 2N -> R (where it is assumed that
 v(0) = 0), a class - of imputations (that is, vectors in Rn summing to v(N)).
 Intuitively, an imputation is considered "fair" if it belongs in this class. There are at
 least three natural computational problems associated with a solution concept.
 Perhaps the most natural problem is to decide whether a proposed allocation is "fair"
 according to F: (1) "Given an imputation x, does it belong to F-?" One may wish to
 ask whether there are any fair allocations at all, given the present coalition situation:
 (2) "Is F nonempty?" Problem (2) is interesting because it is related to the problem
 of generating some member of E. In the case of the von Neumann-Morgenstern
 solution, one even has to ask (3) "Does F exist?" (as this is not always the case, see
 Lucas (1971)).

 We propose to study the computational complexity (Papadimitriou (1993)) of the
 problems associated with each solution concept, and classify the concept as "simple"
 or "complex" depending on the outcome. That is, we propose another criterion for
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 X. DENG AND C. H. PAPADIMITRIOU

 judging whether a proposed solution concept is appropriate: The computational
 complexity of the problems associated with it should not be too great. There is
 something obviously unfair about a concept of "fairness" that requires a supercom-
 puter in order to test whether it applies in a given situation, or in order to produce an
 example of an allocation that is fair according to the concept. But more importantly,
 our proposed criterion can be seen as an instance of the thesis of bounded rationality
 (see Simon (1972) for an extensive discussion). Bounded rationality is the hypothesis
 that decisions by realistic economic agents cannot involve unbounded resources for
 reasoning. It has been recently suggested (see, e.g., Kalai and Stanford (1988),
 Neyman (1985), Papadimitriou ( ), and also Futia (1977) for an earlier attempt) that
 computational complexity is an appropriate mathematical vehicle for capturing
 bounded rationality. Since solution concepts are proposed as the basis for economic
 decisions (deciding whether a proposed split is fair, or generating a fair split), the
 complexity of problems (1), (2) and (3) are of great interest in this regard.

 Thus, we are led to the study of the computational problems (1), (2), and (3) above
 for given functions v. There is a catch, however: If the game is defined by the 2"
 coalition values, there may be little to be said about the computational complexity of
 the various solution concepts, because the input is already exponential in n, and thus,
 in most cases, the computational problems above can be solved very "efficiently." In
 order to arrive at computationally meaningful questions, we focus on the following
 interesting case of the problem: We are given an undirected graph G = (N, E), with
 an integer weight v(i, j) on each edge {i, j}. We then define a game in which, for each

 coalition S, u(S) is defined as ECi,jcsv(i,j). That is, a coalition of nodes can
 guarantee for its members the weight of the subgraph of G induced by the coalition.
 We denote this game defined by the weighted graph G as vG. This situation can be
 thought of as the problem of dividing fairly between n cities the income from a
 highway network connecting them.

 Notice that, if all weights are nonnegative, this set function is subadditive, and
 furthermore the game is convex (Shubik 1981). In the next section we study the
 complexity of computational problems (1), (2), and (3) for various solution concepts in
 the game on the graph as defined above. Our results are roughly these: The Shapley
 value of the graph game is always easy to compute, as it reduces to half the sum of
 the weights of the edges adjacent to each node. For several other solution concepts
 we show that Problems (1) and (2) are NP-hard in general, although in some cases
 they can be reformulated as max-flow problems and solved efficiently when all
 weights are positive. For the bargaining set solution, problem (1) may not even be in
 NP (we conjecture that it is IF -complete). Finally, problem (3) for the von
 Neumann-Morgenstern solution is not even known to be decidable (we point out that
 the fragment of logic in which it is defined is indeed undecidable). In ?3 we discuss
 briefly the more general situation, in which the values are given for all unordered
 k-tuples of nodes for integers k > 2 (that is, instead of a graph we have a hypergraph
 with edges of cardinality k).

 2. Solution concepts. If x e Rn and S c N, we let x(S) = Li sxi, and x(i)=
 x({i}) = xi. Also let v(S, T) = i E , j, E T(i, j) and e(S, x) = v(S) - x(S).

 2.1. The Shapley value. The Shapley value of a game (Shapley 1972) is an
 imputation intended to reflect the marginal contribution of each player to the
 outcome, averaged over all possible "orders of arrival" of the players. That is, the
 proposed set - of fair solutions is a singleton, denoted 0, and defined as follows:
 For each player i,
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 ON THE COMPLEXITY OF COOPERATIVE SOLUTION CONCEPTS

 For each player i,

 (i) = (n-|S|)!(|SI- 1)! (n - SI)(SI - 1)! (v(S) - v(S - {i})).
 i EScN

 Since this definition involves all subsets of N which contain i, it is not easy to
 compute the Shapley value of a game in general. In the special case considered in this
 paper, however, an easy calculation shows that the Shapley value is easily com-
 putable:

 THEOREM 1. The Shapley value of game VG is 2c(i) = E. v(i, j).

 PROOF. Consider the contribution of edge (i, j), v(i, j), to k(i). For every subset
 S containing i, j, this edge contributes

 (n - IS)(S\-1) )! n! uv(i,j).

 There are (- 2 ) subsets S of size k that contain both i and j. All the subsets S of

 size k containing i, j contribute in total

 (n- 1) (n -k)(k - 1)! (i j) k k-2 n!
 which is

 k-i

 n(n - 1

 Summing over k = 2,3,..., n, we have +(i)= jE v(i, j). L
 Notice that, according to this result, the Shapley value is very easy to compute with

 O(n2) operations. Also, it is a very natural notion of fairness, since it assigns to each
 node half the weight (income) from each of its adjacent edges.

 2.2. The core. The core of a game is the set of all imputations x such that, for all
 coalitions S c N, v(S) < x(S).

 We call the function e(S, x) = v(S) - x(S), defined above, the excess of a coalition
 S at an imputation x. Thus, an imputation is in the core if and only if for any
 coalition S the excess is nonpositive. However, it is easy to see that the excess of S at
 the Shapley value, e(S, )), is - times the total weight of the edges joining vertices
 in S with vertices in N - S; it is thus half the weight of the cut (S, N - S). Hence we
 have:

 LEMMA 1. The Shapley value is in the core of VG if and only if there is no negative
 cut in G. w

 In fact, we can show that the Shapley value is the most likely member of the core:

 LEMMA 2. The core of vG is nonempty if and only if there is no negative cut in G.

 PROOF. The if part follows from Lemma 1.
 Conversely, suppose we have a negative cut, i.e., for some subset S of N,

 (S, N- S) = -ies, jeN_Sv(i, j) < 0. Thus, 0(S) - v(S) = O(N- S) - v(N- S)
 = v(S, N - S)/2 < 0. For any imputation x, we have

 x(N) =x(S) +x(N- S) -- (N) = (N) = )(S) + 4(N- S).
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 So,

 x(S) - (S) + x(N - S) -v(N - S)

 = (S) - v(S) + O(N- S) - u(N - S)

 (S,N - S) < 0.

 Therefore, either x(S) - v(S) < 0 or x(N - S) - v(N - S) < 0. Consequently, x
 cannot be in the core, and the core is empty. L[

 To understand the computational complexity of Problems (1) and (2) for the core,
 we need the following easy complexity result, to our knowledge not observed before:

 LEMMA 3. It is NP-complete to tell whether a graph has a negative cut.

 PROOF. It is easy to see the problem is in NP. To prove it is NP-hard, we shall
 reduce the following known NP-complete problem to the negative cut problem:

 MAX-CUT: Given a graph G = (V, E) with a nonnegative weight
 c(i, j) on every edge (i, j) and given an integer K > 0, is there a cut in the
 graph with total weight > K?

 Suppose that we are given such a graph G, a weight function c on its edge set, and

 an integer K. Let c(E) = E{i,j CEc(i, j), and let c'(i, j) = -c(i, j). We add two new
 nodes 0 and n + 1 to the graph, with c'(k, i) = c(E) for k E {0, n + 1} and i =
 1, 2,..., n. Finally, let c'(0, n + 1) = K - nc(E). On the new graph G' with weight
 function c', any cut which does not separate 0 from n + 1 will have a nonnegative
 weight because there will be at least one edge of weight c(E) in the cut, and the total
 sum of negative edges in the cut is no less than -c(E). Hence, a negative cut will
 always separate 0 from n + 1 and will always cut exactly n edges of weight c(E).
 Therefore, the remaining edges of the alleged negative cut induce a cut in the
 original graph of total weight > K. It follows that there is a negative cut in graph G'
 if and only if there was a cut of weight at least K in the original graph. l

 THEOREM 2. The following problems are NP-complete:
 (1) Given VG and imputation x, is it not in the core of vG?
 (2) Given v, is the Shapley value of vG not in the core of VG?
 (3) Given vu, is the core of vG empty?

 PROOF. From Lemmas 1, 2, and 3, we know the above problems are NP-hard. To
 show that they are in NP, we notice if x is not in the core of VG, then there is a
 subset S such that x(S) < vG(S), which can be checked in polynomial time. L

 In contrast, if there are no negative edges in the graph (that is, if the game is
 convex), we can show the following fact:

 LEMMA 4. When all weights of G are nonnegative, we can test in polynomial time
 whether an imputation x is in the core of vG.

 PROOF. We reduce the problem to a network flow problem. Given G = (N, E)
 and weight v on E, we construct a flow network G'. The set of nodes of G' is
 N' =N U E U {0, n + 1}, where 0 is the source and n + 1 is the terminal. The
 directed arcs in the new graph are defined as follows: For each edge {i, j} in E we
 add to G' arcs ({i, j}, i), ({i, j}, j), and (0, {i, j}) with capacities c({i, j}, i) = c({i, j}, j)
 = oo and c(0, {i, j}) = v(i, j). For each node i c N, we construct an arc (i, n + 1) with
 weight c(i, n + 1) = x(i).
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 We shall show that the value of the maximum flow in G' from 0 to n + 1 is

 v(N) = x(N) if and only if x is in the core. First, suppose that there is a flow of this
 value. All arcs to n + 1 and all arcs from 0 are filled to capacity. Thus for any subset
 S of N there is flow through the corresponding nodes of G of value at least x(S).
 However, this must come through the corresponding edges, and thus x(S) > u(S); x
 is in the core. Conversely, suppose that we have a cut with capacity c(S', N' - S') <
 v(N). Obviously, the cut cannot contain any of the arcs of capacity oo. Let S = N n S'.
 Then c(S', N' - S') = x(S) + v(N) - v(S) < v(N). Therefore x(S) < v(S), and x
 is not in the core. c

 THEOREM 3. Problems (1), (2), and (3) in Theorem 2 can be solved in polynomial
 time if G has no negative edges. o

 The c-core is another solution concept, which is in fact a relaxation of the core.
 The excess is not required to be nonpositive, but smaller than a number E > 0. Thus,
 the E-core consists of all the imputations x such that x(S) > v(S) - E for all S c N.
 Since we show in Theorem 6 below that the Shapley value of G minimizes the
 maximum excess, it follows that, for any number c, the Shapley value is in the E-core
 of VG if and only if the E-core of vG is nonempty. Since telling whether there is a cut
 of weight larger than K is an NP-complete problem, we have:

 THEOREM 4. It is NP-complete, given G and E > 0, to tell whether any given
 imputation (and the Shapley value in particular) is not in the E-core of vG. It is also
 NP-complete, given G, to compute the smallest e such that the E-core is nonempty. o

 The same result holds for the weak e-core, the set of all imputations x for which
 x(S) > v(S) - EISI for all S c N.

 2.3. The kernel and the nucleolus. The kernel of a game consists of all imputa-
 tions x such that for any two players i, j,

 max e(S,x) max e(S,x).
 iES, jS jES, ifS

 The kernel of vG is a concept with a good computational characterization: The
 emptyness problem for the kernel of vG is trivial, and the membership problem is
 also easy when the values are all nonnegative.

 THEOREM 5. The Shapley value is always in the kernel of vG.

 PROOF. Since the nucleolus of a cooperative game is always in the kernel (Szep
 and Forgo 1985, Wang 1988), this result follows from Theorem 6 below. O

 In contrast, we conjecture that telling whether an arbitrary imputation for general
 graphs is in the kernel is NP-hard.

 Fix an imputation x, and define the quantity el(S) = v(S) - x(S). Now order the
 subsets of N according to el: el(Sl) > el(S2) > ... > el(Sm), where m = 2". The
 nucleolus is the imputation which lexicographically minimizes the vector
 (el(S1), el(S2),..., el(S,)). The complexity of computing the nucleolus (as it turns
 out, there is only one nucleolus, see Shubik 1981) is an open problem for general
 games. However, it iis simplified considerably in the special case of graphs:

 THEOREM 6. The Shapley value of vG is the same as the nucleolus.

 PROOF. Let x be the nucleolus; define e2(S) = v(S) - )(S), and suppose that we
 order the subsets of N: e2(T) > e2(T2) > . . > e2(Tm). Let a1
 (el(S1), el(S2),.., e1(Sm)), and a2 = (e2(Tl), e2(T2),..., e2(Tm)). Since x is the nu-
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 cleolus, a1 is lexicographically less than or equal to a2. Since the excess of the
 Shapley value of a coalition equals the total weight of all outgoing edges, we have

 e2(S) = e2(N - S). Therefore, we can arrange the ordering of the Ti's such that
 T2i_1 = N - T2i. We shall then have e2(T2i_l) = e2(T2i), for each i = 1, 2,..., m/2;
 we can assume without loss of generality that el(T2i,_) > el(T2).

 We claim that for each i = 1, 2,..., m/2,

 (1) el(S2i_l) = el(S2i) = el(T2i_l) = el(T2i) = e2(T2i_) - e2(T2).

 The proof is by imputation on i. First, when i = 1, we claim that el(TI) < e1(Sl) <
 e2(T1) = e2(T2) < el(T2) < el(S2) < el(S1). The first inequality is from the fact that
 the S's are sorted in decreasing order; the second from the fact that x is the
 nucleolus; the third equality is by the symmetry of the excess of the Shapley value; the
 fourth inequality from the observation that el(T1) + el(T2) = e2(TI) + e2(T2) = v(T1)
 + v(T2) - v(N) and the previous inequalities; the fifth inequality from the fact that
 the S's are sorted in decreasing order and the fact that e1(Tl) > e1(T2); and the last
 from the fact that the S's are sorted in decreasing order. Comparing terms, we notice
 that all except for the first must be equal, and the first is equal to them because of
 el(T1) + el(T2) = e2(T) + e2(T2).

 Suppose, for all i < k, (1) holds. The induction step is identical to the previous
 argument. Because x is in the nucleolus and by the inductive hypothesis that the first
 2k - 2 elements of a1 and a2 are the same, we have el(S2k_1) < e2(T2k-1). By the
 induction hypothesis, el(Ti) = el(S), i = 1, 2,..., 2k - 2. From the ordering of vec-
 tor a,, we have el(T2k _) < el(S2k,_), j = 0, 1. Since e2(T2k) = e2(T2k_l), el(T2k_j)
 < el(S2k_) < e2(T2k-), j = 0, 1. Again by summing over both sides of the two
 inequalities, both sides are equal to v(T2k_l) + (T2k) - v(N), which requires that
 equalities hold in the original two inequalities. Thus, el(T2k_j)= el(S2k_l) =
 e2(T2k_j), j = 0, Since el(S2k-1) > el(S2k) > min[el(T2k_1), el(T2k_2)], (1) holds
 for i = k.

 Therefore, (1) is true for all i = 1, 2,..., m/2. In other words, el(T) = e2(T) for
 every subset T of N. In particular, let T = {j} for j E N, and v(j) - x(j) = v(j) -
 4(j). Thus x(j) = ((j) for every j E N. o

 2.4. The bargaining set. The bargaining set is the set of all imputations x for
 which, for all players i and j, if there is an imputation y and a coalition S containing
 i but not j, and such that (a) y(S) < v(S), and (b) Xk < Yk for all k e S, then there is
 another imputation z and set T containing j but not i such that (a) z(T) < v(T);
 (b) Zk > Yk for k E T n S, and (c) Zk > xk for k E T - S. Intuitively, this means
 that whenever a player i objects to x using the arguments y and S, then j can
 respond with arguments z and T.

 THEOREM 7. Deciding whether imputation is in the bargaining set of VG is NP-hard.

 PROOF. We prove that the problem is NP-hard, again, by a reduction from the
 negative cut problem to the bargaining set problem. Suppose we are given a graph
 G = (V, E) and a weight function v: E --> R. Recall that the Shapley value is not in
 the core iff there is a negative cut.

 Consider the Shapley value of UG, and construct a new graph H by adding a new
 node u? to G and assigning weight w(lE[) to each of the new edges between u? and
 all the old nodes, where w(lEl)= EeeEEv(e)l. Define an imputation x of vH by
 assigning the Shapley value of vG to the nodes of G, and assigning the sum of the
 edge weights of all the new edges to u?. We denote this imputation by x0. Since every
 cut C should contain at least one of the edges incident to u? which has a weight

 262

This content downloaded from 
������������103.142.131.135 on Wed, 27 Nov 2024 08:01:03 UTC������������ 

All use subject to https://about.jstor.org/terms



 ON THE COMPLEXITY OF COOPERATIVE SOLUTION CONCEPTS

 w(IEI), and the total weight of all the other edges in the cut C is at least -w(lEl), it
 follows that H has no negative cut.

 We claim that x0 is in the core of vH iff G has no negative cut. For the if-part,
 suppose G has no negative cut, and let S be a subset of vertices of H. If u? X S, then
 xO(S) = OG(S) and VH(S) = G(S). Since OG is in the core of G when G has no
 negative cut, we see that xO(S) = OG(S) > vG(S)= VH(S). If u? E S, then xo(S -
 {u?}) > vH(S - {u?}) from the above discussion. Moreover, by the assignment of
 xo(u), Xo(u?) = IVI w(IEI) > IS - {u?}l w(lEI) = VH(S - {u?}, u?). Adding these
 two inequalities, we again obtain xO(S) > vH(S). Thus, x0 is in the core of H. For
 the only-if-part, assume that G has a negative cut. Then, there must be a subset
 S c V such that OG(S) < UG(S) since the core of G is empty in this case. Thus,
 xO(S) = OG(S) < vG(S) = VH(S) and x0 is not in the core of H.

 From H = (V', E') and the imputation x0 on vH, we further construct a new graph
 D as follows. We add a new node u1, and new edges {(i, ul): i E V'}. The edge weight
 for the new edges is defined to be OH(i) - Xo(i) for each edge, (i, ul), where H,(i) is
 the Shapley value on the graph H. Define a new imputation yo by assigning the
 Shapley value of H to the nodes in H, and 0 to the new node u1. We claim that yo is
 in the bargaining set of D, iff x0 is in the core of H.

 If x0 is not in the core of H, then, G has a negative cut. Thus, there is a subset
 S c V such that, G(S) < v(S). Consider the subset S' = S u (ul1 in the graph D
 now: yo(S') - OH(S) and VD(S') = OH(S) - x(S) + vH(S). Thus, yO(S') - vD(S') =
 xo(S)- vH(S). Since S c V, x0(S) = &G(S) and vH(S) = u(S). We have y0(S') -
 D(S') = Xo(S) - vH(S) = 4G(S) - VG(S) < 0. However, for any subset T c V',
 y0(T) = HM(T) and VD(T) = VH(T). Since there is no negative subset in H, yo(T) -
 VD(T) = H(T) - vH(T) = cut(H, H) > 0. Thus, in the above definition for the
 bargaining set, take i = u1 and j 0 S, then i can object to y0 with the subset S' and
 any imputation y, with y1(i) = y0(i) + e, Vi E S', for a sufficiently small e > 0. The
 player j cannot respond with a subset T which does not contain ul. Thus, y0 is not in
 the bargaining set. On the other hand, if x0 is in the core of H, then G has no
 negative cuts. We have y0(S') - vD(S') = x0(S) - vH(S) = G(S) - vG(S) > 0 for
 all subset S' with ul E S'. And also as we have seen, for all T with ul C T,
 yo(T) - vD(T) = H(T) - vH(T) = cut(H, H) > 0. The imputation yo is in the core
 of D and thus in the bargaining set of D.

 Combining the two claims proven above, we conclude that yo is not in the
 bargaining set of D iff G has a negative cut. Therefore, it is NP-hard to decide if an
 imputation is in the bargaining set. o

 We conjecture that the problem of deciding whether an imputation is in the
 bargaining set of vG is HII-complete. The complexity class II2, a superset of NP,
 contains sets expressible as {x: Vy 3zR(x, y, z)}, where R is a polynomially com-
 putable and polynomially balanced (that is, the length of y and z is polynomial in the
 length of x) ternary predicate (see Papadimitriou (1993) for definitions and a detailed
 treatment of the subject). Telling whether an imputation is in the bargaining set of vG
 is in H1P, since the definition of the bargaining set has this logical structure of two
 alternating quantifiers, universal first.

 2.5. On the von Neumann-Morgenstern solution. In their classical work in Game
 Theory, von Neumann and Morgenstern defined the (historically first) solution
 concept. Suppose that x and y are imputations. We say that x dominates y if there is
 a coalition S such that (a) x(S) < v(S), and (b) xi > Yi, i E S. We say that a set y of
 imputations is a solution if (1) no two imputations in y dominate each other, and
 (2) any imputation not in S- is dominated by some imputation in S. This solution
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 concept lost its early popularity when it was shown (Lucas) that there are games with
 no solutions.

 When the game is convex (in our case, when the edge weights are positive), then
 the core is a solution. In general, however, one has to rely on the definition of the von
 Neumann-Morgenstern solution in order to determine whether a game VG has one. It
 is not obvious at all that there is any algorithm (however slow) for deciding this!

 Logically, the existence of a van Neumann-Morgenstern solution can be expressed
 as follows:

 3-c 'n x(x, , v),

 where f(x, -, v) is a Boolean combination of linear inequalities involving the
 variables xi, and the constants vi, as well as statements of the form (x1, x3, V2) E -.
 It is worth remarking that all other solution concepts described above define y- in
 terms of sentences of considerably simpler structure (most significantly, without the
 second order existential quantifier). In fact, it may be interesting to note that the
 problem of checking the validity of sentences such as the one above is undecidable
 (even in the n = 3 case). The proof (due to Sam Buss) involves using the linear
 inequalities in a for encoding in the set y of vectors the multiplication table of the
 integers (by stating in Y the axioms that define multiplication), thus reducing the
 validity problem for Number Theory, shown undecidable in G6del's (1931) classical
 work, to the problem in hand.

 3. Extensions. An interesting generalization of the situation considered is the
 one in which u(S) is given as the sum of v(e) not over all sets e of size 2 contained in
 S, but over all sets of size k > 2 contained in S; notice that v is still presented by
 data that are polynomial in n, and hence the complexity questions are still meaning-
 ful. In this case we can think that v is given in terms of a weighted hypergraph
 H = (N, E), with hyperedges of size k (or, we may even let the size of a hyperedge
 vary, as long as the number of hyperedges is polynomial in n; we do not elaborate
 more on this generalization). It turns out that in this generalization the Shapley value
 can again be computed easily as v+(i)= k eEEU(e). The excess of the Shapley
 value at a set S is k times the total weight of the hyperedges having exactly i nodes in
 S, summed over i = 1,..., k. It is not hard to extend the proof of Theorem 2 to show
 that telling whether the Shapley value is in the core (that is, whether in a hypergraph
 there is a set S with a negative such sum) is NP-complete.

 On the positive side, when all weights are nonnegative the MAX-FLOW technique
 of Lemma 4 still applies: We shall show how to decide in polynomial time whether a
 given imputation x is in the core. For the flow network H', the set of nodes is
 N' = N u E u {, n + 1), where 0 is the source and n + 1 is the terminal. The
 directed arcs in the new graph are defined as follows: For each edge e E E we add to
 H' arcs (e, i) for all i e e, and (0, e), with capacities c(e, i) = oo and c(0, e) = v(e).
 For each node i E N, we construct an arc (i, n + 1) with weight c(i, n + 1) = x(i).
 Thus:

 THEOREM 8. Problems (1), (2), and (3) in Theorem 2 are NP-complete in the case
 of hypergraphs, and can be solved in polynomial time for hypergraphs with no negative
 edges. o

 A natural question is whether Theorem 5 and Theorem 6 (relating the Shapley
 value to the kernel and the nucleolus) still hold for hypergraphs. Theorem 5 does not,
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 not even in the convex case. First notice that

 v(s) - () = - E e n S v(e),
 ee(S,N-S) lel

 where (S, N - S) is the set of all hyperedges that intersect both S and N - S.
 Consider a game with four players, (1,2,3,4}, with k = 3 and v(1,2,3) = 3; and
 v(S) = 1, if ISI = 3 and 4 E S. Thus v(1,2,3,4) = 6. One can easily calculate that
 maxEEs 4 e(S, <) = - 4 while max4S, E e(S, ) = -1. Hence the Shapley
 value is not in the kernel. Since the nucleolus is always in the kernel, it also follows
 that the Shapley value is not the nucleolus of this game.

 Finally, as with all complexity results, ours depend on the chosen representation of
 the input (that is, the game). They are informative results about the complexity of
 solution concepts only to the extent that games such as vG can be considered
 representative instances of the more general framework. A more general representa-
 tion would be the one in which the game is given implicitly by an algorithm for
 computing u(S), given any S. It is clear that our NP-hardness results (Theorems 2, 4,
 and 7) also hold in this more general situation (since the graph game studied can be
 seen as a special case of this). Our positive results (Theorems 1, 3, 5, and 6), however,
 may or may not hold in this more general setting. In other special cases and
 representations, completely different results are possible.

 As an illustration of this point, let us consider the following game, of a completely
 different nature: Weighted majority games. Each player i E N has an assigned positive
 integer weight wi, and we let W = E =lwi. The value of a coalition S is one if
 Ei wi > ?, and zero otherwise. In this game problems (1), (2), and (3) in Theorem
 2 are all trivial (the core is empty if there are two distinct minimal majorities, and all
 other cases are trivial). In contrast, computing the Shapley value is #P-complete, that
 is, as hard as any counting problem in NP, see Papadimitriou (1993).

 THEOREM 9. Computing the Shapley value in weighted majority games is #P-com-
 plete.

 PROOF. Computing n!4(i) can be considered as the number of accepting compu-
 tations of a nondeterministic Turing machine, so the problem is in the class #P. To
 show completeness, recall the problem KNAPSACK (Papadimitriou and Steiglitz
 1982, Papadimitriou 1993): We are given positive integers a1,..., am, and another K,
 and we are asked whether there is a subset S of {1, 2,..., m} such that Ei E sai = K.
 It is easy to see from the reductions explained in (Papadimitriou and Steiglitz 1982,
 Papadimitriou 1993) that this problem is NP-complete even if (1) K = M-, where
 M = Emlai; and (2) for some k < m, if Ei,sai = K then ISI = k; that is, all
 solutions have the same cardinality. Now, the counting problem associated with such
 instances of KNAPSACK (the problem of determining how many solutions exist) is
 #P-complete. We shall reduce this problem to computing the Shapley value of a
 weighted majority game.

 Given such an instance of KNAPSACK with m integers al,..., am, we construct
 the following majority game: n = m + 1; for i = 1,..., m, wi = a; and wn = 1. It is
 now easy to see that for any subset S of Nv(S) - v(S - {n}) is one if and only if
 n S,

 M+ 1 M+ 1
 E wj > 2 and wj < 2
 i S iES-{n}
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 But, since w, = 1, this is the same as saying that

 M

 w = 2 = K,
 ieS- {n}

 and thus S- {n} is a solution to the original instance of KNAPSACK. u(S)-
 v(S - {n}) is zero otherwise. It follows from the definition of the Shapley value (see
 the beginning of ?2) that +(n) is precisely

 (n - k)!(k - 1)!
 n!

 times the number of solutions of the given instance of KNAPSACK (where k is the
 integer guaranteed by property (2) above). o

 Acknowledgement. We are grateful to the editor and two anonymous referees for
 their very careful and justly critical reading of our manuscript, as well as for
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