Announcements

>HW 2 will be due this Saturday.
- Can chat with me after today’s class if any help is needed

> Project proposals are all well-done!

»HW 3, about online learning, will be out this Saturday
- Will be lighter

- Please focus more on project from now on

Goals for Today

Wrap up online learning by designing learning algorithms

v'Against stronger benchmark
v'Under partial/bandit feedback

CMSC 35401:The Interplay of Economics and ML
(Winter 2024)

Swap Regret and Convergence to CE

Instructor: Haifeng Xu

Outline

> (External) Regret vs Swap Regret

» Convergence to Correlated Equilibrium

> Converting No Regret to No Swap Regret

Recap: Online Learning

At each time stept = 1,---, T, the following occurs in order:

1.

2
3.
4

Learner picks a distribution p; over actions [n]

Adversary picks cost vector ¢, € [0,1]"
Action i; ~ p; is chosen and learner incurs cost c¢;(i;)

Learner observes c; (for use in future time steps)

Recap: (External) Regret

> External regret

Ry = Ej<p, ZtE[T] ce (ig) — }2[1,‘3] z:tE[T] ce(J)

»Benchmark ng[m] Y.t ¢:(j) is the learner utility had he known ¢y, -+, ¢y
JE[N

and is allowed to take the best single action across all rounds

»Describes how much the learner regrets, had he known the cost
vector cq, -+, cp in hindsight

Recap: (External) Regret

> A closer look at external regret

Ry = Ej<p, ZtE[T] ¢y (ig) — }2[1,‘3] z:tE[T] ce(J)

= Dte[T] Diefn] ¢t (Dpe () — }2[17?] 2ter) €t ()

= max [Zte[ﬂ Yien] Ct(Dpe (D) — Xeerm ce(N)]

J€[n]

= max 7 Zieqni[ce (D) — cc()]pe (@)

JENn] Y b LI
Many-to-one action swap

Recap: (External) Regret

> A closer look at external regret
Rr = Eit~ptZtE[T] ce (ir) — mln ZtE[T ct(J)
= Zte[T] Zie[n] Ct(i)Pt(l) - }2[17?] Zte[T] ct(J)

= max [Yeeir) Diepm ¢ (DPe(D) = Zeerr) e ()]

JE[n]

= max ¥eqr) Dienf[ccD) — & GIpe (D)

JEm] Y L

>In external regret, adversary is allowed to swap to a single action
j and can choose the best j in hindsight

Swap Regret

> A closer look at external regret

Rr = }gﬁﬁ 2telT] Zie[n] [c: (D) — c:(7)]pe ()

»>3Swap regret allows many-to-many action swap c:(s(i))
- Eg.,s(1)=2,5(2)=1,53) =4,s(4) =4

> Formally,
swRy = max Teeqr) Tiepmlce () — ce(s@)Ipe (D)

where max is over all possible swap functions
> Each action i has n choices to swap to, so n"™ many swap functions

> Quiz: how many many-to-one swaps?

Useful Facts about Swap Regret

Fact 1. For any algorithm: swR; = Ry

Fact 2. For any algorithm execution p4, -+, p7, the optimal swap
function s* satisfies, for any i,

s7(0) = argmax e[() = ce(D]pe ()

Recall swap regret
SWRr = max Xepr) Ziepnj[ce (D) — ¢t (s(D)]pe ()

Proof:

>s(i) only affects term X, cpplc:(8) — ¢ (s(D)]p: (i), SO should be
picked to maximize this term

10

Useful Facts about Swap Regret

Fact 1. For any algorithm: swR; = Ry

Fact 2. For any algorithm execution p4, -+, p7, the optimal swap
function s* satisfies, for any i,

s7(0) = argmax e[() = ce(D]pe ()

Remarks:

> The optimal swap can be decided “independently” for each i

11

Useful Facts about Swap Regret

Fact 1. For any algorithm: swR; = Ry

Fact 2. For any algorithm execution p4, -+, p7, the optimal swap
function s* satisfies, for any i,

s7(0) = argmax e[() = ce(D]pe ()

Remarks:

»Benchmark of swap regret depends on the algorithm execution
pi, -, P, but benchmark of external regret does not.

> This raises a subtle issue: an algorithm minimize swap regret
does not necessarily minimize the total loss

- An algorithm may intentionally take less actions so the benchmark
does not have many opportunities to swap

12

Useful Facts about Swap Regret

Fact 1. For any algorithm: swR; = R;

Fact 2. For any algorithm execution p4, -+, p7, the optimal swap
function s* satisfies, for any i,

s7(0) = argmax e[() = ce(D]pe ()

pick worst i

S[a>]< max % eyl () — e (Dpe (D)

Is also called the internal regret

Note: internal regret < swap regret < nx internal regret

13

Outline

> (External) Regret vs Swap Regret

» Convergence to Correlated Equilibrium

> Converting No Regret to No Swap Regret

14

Recap: Normal-Form Games and CE

> n players, denoted by set [n] = {1,:--,n}
> Player i takes action a; € A;

> Player utility depends on the outcome of the game, i.e., an action
profile a = (a4, -+, a,)
- Player i receives payoff u;(a) for any outcome a € I1;L 4;

> Correlated equilibrium is an action recommendation policy

A recommendation policy m is a correlated equilibrium if

Za_i Ui (Cli, (l_i) . T[(Cli, Cl_l') > Za—i U; (a’i, (l_i) . T[(Cli, Cl_l')) Vai, CL’i (S Ai' Vi.

> That is, for any recommended action a;, player i does not want
to “swap” to another a;

iio

Repeated Games with No-Swap-Regret Players

> The game is played repeatedly for T rounds

»Each player uses an online learning algorithm to select a mixed
strategy at each round t

»>For any player i's perspective, the following occurs in order at t
- Picks a mixed strategy x| € A4, Over actions in 4;

- Any other player j # i picks a mixed strategy xf € A|Aj|
- Player i receives expected utility w; (x{, x;) = E,_ ¢t) ui(a)

- Player i learns x*; (for future use)

16

From No Swap Regret to Correlated Equ

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence {x-t} for i. The following recommendation

policy ' converges to a CE l(a) = —Zt ien1*i (@) ,V a € A.

Remarks:

>In mixed strategy profile (x},x5,---,x5), prob. of a is ;e xf (a;)

>’ (a) is simply the average of I1;¢[,,x; t(a;) over T rounds

17

From No Swap Regret to Correlated Equ

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence {xit}tem for i. The following recommendation

policy n” converges to a CE: ' (a) = ;th Miepxi(a;),V a € A.

Proof:

»Derive player i’s expected utility from =’
1
Saea |72 Micpyx! (@) | - ui(a)

1
=~ Xt Laea Miemyxi (@) - ui(a@)

18

From No Swap Regret to Correlated Equ

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence {x-t} for i. The following recommendation

policy ' converges to a CE l(a) = —Zt iefn1%i (@), ¥V a € A.

Proof:
»Derive player i's expected utility from 7’
Saea |72 Micpyx! (@) | - ui(a)
Z ZaEA HlE x (al) U; (a)
= ;Zt w;(x;, x5;)

5

From No Swap Regret to Correlated Equ

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence {xit}tem for i. The following recommendation

policy n” converges to a CE: ' (a) = ;th Miepxi(a;),V a € A.

Proof:

»Derive player i’s expected utility from =’
Saea |72 Micpyx! (@) | - ui(a)
= =% Yaea L xt (ap) - (@)
= Zeui (e,)

1
- ;ZaiEAi 1751=1 ui(ai’xfi) . xit(ai)

20

From No Swap Regret to Correlated Equ

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence {x-t} for i. The following recommendation

policy ' converges to a CE l(a) = —Zt iefn1%i (@), ¥V a € A.

Proof:
»Derive player i's expected utility from 7’
1
Saea |72 Micpyx! (@) | - ui(a)
1
=~ Xt Laea Miemyxi (@) - ui(a@)
= lztu-(xf,xt)
Za ea; X1 wi(ag xp) - xf (@)
>Playeri’s expected utility conditioned on being recommended q; is

Z 1 U; (al,x) x;(a;) (normalization factor omitted)

21

From No Swap Regret to Correlated Equ

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence {x-t} for i. The following recommendation

policy ' converges to a CE l(a) = —Zt iefn1%i (@), ¥V a € A.

Proof:

> To verify CE, need to show for all player i and all a; € A4;

1
> —Xi-iwi(s(a), xby) - xi(ay), Vs(a;) € 4

>Let s* be the optimal swap function in the swap regret:
SWRT = maX Z 1Za EA;{ [u (S(al) x—l) ui(ai; xii)]) xit(ai)
= Zal(Zt 1[wi(s™(ay), x—y) — ui(ai: in | xit(ai))
t=1[ui(5 (), x_;) — ui(ai;XEi)] 'xit(ai); Va;

_ZT 1u(aux) xt(al)

From No Swap Regret to Correlated Equ

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence {x-t} for i. The following recommendation

policy ' converges to a CE l(a) = —Zt iefn1%i (@), ¥V a € A.

Proof:

> To verify CE, need to show for all player i and all a; € A4;

1 1
;Z?:;l wi(as, xy) - xf(a;) = ;Z{=1 wi(s(a),xL;) - x{(a), Vs(a;) € 4

>Let s* be the optimal swap function in the swap regret:
swRE = Y1 [wi(s™(a), x-) —wi(ap, xL,)] - xf (@), Ve
»From Fact 2 before, optimal swap function s* satisfies

S (al) = arg (H})aX Z 1[u (S(al) x—l) ui(ai'xfi)]) xit(ai)

23

From No Swap Regret to Correlated Equ

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence {x-t} for i. The following recommendation

policy ' converges to a CE l(a) = —Zt iefn1%i (@), ¥V a € A.

Proof:

>To verify CE, need to show for all player i and all a; € A;

Foaw(apaty) - xf(a) = 2Rl w(s(@) xL) - xf(ay), Vs(ay) € 4
>Let s* be the optimal swap function in the swap regret:

swRE = Y1 [wi(s™(a), x-) —wi(ap, xL,)] - xf (@), Ve
»From Fact 2 before, optimal swap function s* satisfies

S (al) = arg (maX Z 1[u (S(al) x—l) ui(ai'xfi)]) xit(ai)

i) EA
> This implies Thm follows by diving both sides by T(—)

swRE > YT Jw(s(ay),) —wi(a;, x%;)] - xf(a;), Va; and s(a;) (24

Outline

> (External) Regret vs Swap Regret

» Convergence to Correlated Equilibrium

» Converting No Regret to No Swap Regret

25

Good External Regret # Good Swap Regret

»>An algorithm with small swap regret also has small external regret

> The reverse is not true — an algorithm with small external regret
does not necessarily have small swap regret

- Examples are not difficult to construct

Does online learning algorithm with sublinear no swap regret exist?

26

Theorem. Any online algorithm A with external regret R can be
converted to another online algorithm H swap regret nR.

n = number of actions

> H utilizes A but is different and more complicated

> There exists no-swap-regret online learning algorithm
. Since there exists online algorithm with O(v/T Inn) regret

27

Theorem. Any online algorithm A with external regret R can be
converted to another online algorithm H swap regret nR.

Proof Overview:

> The idea starts from the following observations

Let s* be the optimal swap function, then:
SWRr = max ZtE[T] Zie[n] [c: () — ce(s(@))]p: (@)
= Yiem)(Teerlce@ — ce(s*(@)Ipe(@))

28

Theorem. Any online algorithm A with external regret R can be
converted to another online algorithm H swap regret nR.

Proof Overview:

> The idea starts from the following observations

Let s* be the optimal swap function, then:
SWRr = max ZtE[T] Zie[n] [c: () — ce(s(@))]p: (@)
= Yiem)(Zeeprylee (@ — ce(s* (@)pe (@))

regret from action i’s swap

Two observations:

1. The red terms “looks like” an external regret term
- Swap to a single action, but X, ¢ (Dp, (i) does not look quite right yet

2. Ifthe red term is less than R for any i, then we are done

29

Theorem. Any online algorithm A with external regret R can be
converted to another online algorithm H swap regret nR.

Proof Step 1: constructing H

»Make n copies of algorithm A as 44,-:-, 4,
- Intuitively, A; takes care of the regret from action i's swap

»Construction of H
- Atround t, H uses algorithm A; with probability p, (i) (to be designed)

. Let gL € A, be the randomized action of 4; generated at round t
- Choose p;(i) € [0,1] to satisfy the following:

Y pe(i) =1 » p, is a distribution

Y pe(Dat() = pe(j), V) € [n] » p, is stationary

That is, following two ways for H to select actions are equivalent
1. Select algorithm A; with prob p; (i), then use A; to pick an action
2. Select i with probability p; (i)

30

Theorem. Any online algorithm A with external regret R can be
converted to another online algorithm H swap regret nR.

Proof Step 1: constructing H

»Make n copies of algorithm A as 44,-:+, 4,
- Intuitively, A; takes care of the regret from action i's swap

»Construction of H
- At round t, H uses algorithm A; with probability p;(i) (to be designed)

- Let gt € A, be the randomized action of 4; generated at round t
- Choose p;(i) € [0,1] to satisfy the following:

Yp.() =1 » p¢ Is a distribution
% pe(Dq:() = pe(),Vj € [n] » D¢ IS stationary

« After observing cost vector c;, allocate p;(i) - c; as the “simulated
cost” to algorithm A; for its future use

25

Theorem. Any online algorithm A with external regret R can be
converted to another online algorithm H swap regret nR.

Proof Step 2: deriving regret bound
>A; has external regret R, so

Dire[T] 2 at () [pe e () —pDce NI <R Vj' €[n] (1)
>Swap regret of H

SWRy = max ZtE[T] Zje[n] pe(Nc: () — ¢ (s())]

Need to somehow relate swR to gt’s, because Inequality (1)
Is the only bound we have

By our construction: ¥ p.()qi()) = p:(j),Vj € [n]

32

Theorem. Any online algorithm A with external regret R can be
converted to another online algorithm H swap regret nR.

Proof Step 2: deriving regret bound
>A; has external regret R, so

Dire[T] 2 at () [pe e () —pDce NI <R Vj' €[n] (1)
>Swap regret of H

SWRy = max ZtE[T] Zje[n] pe(Nc: () — ¢ (s())]

= mSaX Zte[T] Zje[n] Zipt(i)cﬁ.(j) [c:(j) — ¢t (s())]

By our construction: ¥ p.()qi()) = p:(j),Vj € [n]

33

Theorem. Any online algorithm A with external regret R can be
converted to another online algorithm H swap regret nR.

Proof Step 2: deriving regret bound
>A; has external regret R, so

Ve 27 40D [PeDee () — pe(Dee N1 <R Vj' €[n] (1)
>Swap regret of H
SWRy = max 2terr) 2jefn PeDIee () — ce(s())]
= max te[r] 2jefn] Y e @Dqi() [e: () — ce(s())]

= mSaX Zi(ZtE[T] Zje[n] Pt(l‘)(ﬁ(]‘)[ct(]') —c:(s())])

34

Theorem. Any online algorithm A with external regret R can be
converted to another online algorithm H swap regret nR.

Proof Step 2: deriving regret bound
>A; has external regret R, so

Lieelr] 2j at () [pe@ece () —pe(De, N1 <R Vj' €ln] (1)
>Swap regret of H
SWRy = mSaX Zte[r] Zje[n] pe(NIec () — e (s())]
= mSaX Zte[T] Zje[n] Zipt(i)qg(]') [c: () — ce(s())]
= max Zl(Qite[T] 2 jeln] pe(Dqc(NIec () — ce(s())])

<n-'R

35

Thank You

Haifeng Xu
University of Chicago

haifengxu(@uchicago.edu

mailto:haifengxu@uchicago.edu

